মহাকাশ

আইনস্টাইনের ঘড়ি

আজ আমরা যে বিষয়ে জানবো তা হল টাইম ডাইলেশান বা, কাল দীর্ঘায়ন। বোঝা গেলো না তো বিষয়টা? তাহলে চলুন একটা উদাহরণের সাহায্যে বোঝার চেষ্টা করা যাক।

ধরুন আপনি এবং আইনস্টাইন সকাল বেলা ঠিক একই কম্পানির দুটি ঘড়ি হাতে পড়লেন। হাতে পড়ার সময় আপনারা ঘড়ি দুটোর সময় ঠিক ঠিক মিলিয়ে নিলেন যে দুটি ঘড়িতেই ৮ টা ১৫ বাজে। এখন আপনি যেখানে ছিলেন ঠিক সেখানেই বসে রইলেন, আর আইনস্টাইন তার হাত ঘড়িটি নিয়ে আপনার হিসেবে ১ দিন ১ ঘন্টা ধরে একটি উচ্চ গতির রকেট নিয়ে মহাকাশ থেকে ঘুরে আসলেন। ফিরে আসার পর যদি আপনি এবং আইনস্টাইন আপনাদের হাত ঘড়ি দুটো মিলিয়ে দেখেন তাহলে কি দেখার কথা? নিশ্চয় ভাবছেন যে, আপনার ঘড়িতে যদি তখন ৯ টা ১৫ দেখায় তাহলে আইনস্টাইনের ঘড়িতেও সেই একই সময় দেখাবে। আমাদের দৈনন্দিন অভিজ্ঞতা আমাদের তাই বলে থাকে। কিন্তু বিষয়টি ভুল। আসলে দেখা যাবে আপনার ঘড়িতে যদি ৯ টা ১৫ দেখায় তবে আইনস্টাইনের ঘড়িতে অবশ্যই তার চেয়ে কম সময় দেখাবে। হয়তো ৯ টা বা, ৮ টা ১৫ মিনিট দেখাবে (কত কম সেটা নির্ভর করবে আইনস্টাইনের রকেটের বেগের উপড়)।

জানি বিষয়টা অবিশ্বাস্য লাগছে। বিষয়টা গাণিতিকভাবে আমরা দেখবো একটু পরে। চলুন তার আগে একটা থট এক্সপেরিমেন্টের মাধ্যমে বিষয়টা বোঝার চেষ্টা করব। তার আগে আইনস্টাইনে স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি আরেকবার পড়ে নেয়া যাক।

১। “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়” (গ্যালিলিওর প্রথম স্বীকার্যের অনুরুপ)

২। আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে। আলোর বেগ যেভাবেই মাপা হোক না কেন তা সর্বদা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যাবে।

তাহলে এখন আমাদের থট এক্সপেরিমেন্টটি শুরু করা যাক। মনে করুন আপনি একটি ট্রেন বা, ট্রলিতে সামনে দাঁড়িয়ে আছেন, যেখান থেকে বাইরের রেল লাইনের ট্র্যাকটি স্পষ্ট দেখা যায়। আপনি যে দিকে মুখ করে বাইরে তাকিয়ে আছেন (নিচের ছবির হলুদ গেঞ্জি পড়া মানুষটির মতো) ট্রেনটি তার বিপরীত দিকে খুব ধীর গতিতে গতিশীল আছে। ট্রলিটির ট্র্যাকের পাশে একটা বিশাল ঘড়ি ছিল যাকে অতিক্রম করে ট্রলিটি সামনে এগিয়ে যাচ্ছে। আপনি যদি এখন ঘড়িটির দিকে তাকান আর দেখেন সেখানে সকাল ৯ টা বাজে এর অর্থ কি? এর অর্থ হল ঘড়িতে ৯ টা বাজার পর আলোক রশ্মি সেই ঘড়িতে প্রতিফলিত হয়ে আপনার চোখে আসার পর আপনি বুঝতে পারলেন যে ঘড়িতে আসলে ৯ টা বাজে। এখন মহাকাশ থেকে যদি কোন এলিয়েন ঘড়িটির দিকে তাকিয়ে থাকে তাহলে ৯ টা বাজার অনেক পরে তার চোখে সেই আলোক রশ্মিটি (যদি তারও আমাদের মতো চোখ থেকে থাকে) যেয়ে পৌঁছাবে। অর্থাৎ, একই ঘড়িতে দুইজন দূরত্বের কারণে দুই রকম সময় দেখবে। এটা খুবই সাধারণ একটা বিষয়। এবার আমরা আরেকটু গভীরভাবে চিন্তা ভাবনা শুরু করি চলুন।

dxcf-gh

ধরুণ আপনি দেখলেন ঘড়িতে ৯ টা বাজে আর এর পর পরই আলোর বেগের ৩ ভাগের ১ ভাগ বেগে ঘড়ি থেকে দূরে সড়ে যেতে লাগলেন। তাহলে পরবর্তি আলোক রশ্মিটি আপনার চোখে পৌঁছাতে আগের চেয়ে একটু বেশি সময় নেবে। কারণ ইতোমধ্যেই আপনি ঘড়িটি থেকে দূরে সরে যেতে শুরু করেছেন ।অর্থাৎ, ট্রলিটি স্থির থাকলে ৯ টা বাজার যতক্ষণ পর ৯ টা বেজে ১ সেকেন্ড দেখা যেতো, ট্রলিটি অনেক বেশি গতিতে গতিশীল থাকলে এ সময়টা (৯ টা থেকে ৯ টা ১ সেকেন্ড বাজার সময়) অনেক দীর্ঘ দেখাতো। এবার চিন্তা করুন আপনার চোখে যখন ৯ টা বাজে এই তথ্য বহনকারী আলোক রশ্মিটি এসে আঘাত করল ঠিক তার সাথে সাথেই ট্রলিটি আলোর বেগে ঘড়িটি থেকে দূরে সরে যেতে শুরু করল, তাহলে কি ঘটবে?

তাহলে আপনার চোখে সবসময় সেই ৯ টা বাজার সময়ের চিত্রটিই গেঁথে যাবে। আপনার চোখের সাথে সাথে সেই রশ্মিটিও আলোর বেগে যেতে থাকবে। আর পরবর্তি আলোক রশ্মিটি যেটি ৯ টা বেজে ১ সেকেন্ড এই তথ্যটি বহন করছে তা আলোর বেগে আপনার দিকে আসলেও কখনই আপনার চোখে পৌঁছাবে না। কারণ আপনিও আলোর বেগে দূরে সরে যাচ্ছেন। অর্থাৎ আপনি দেখবেন ঘড়ির কাটাগুলো ৯ টা বাজার পর একদম স্থির হয়ে গেছে। অর্থাৎ, মনে হবে সময়ই স্থির হয়ে গেছে!! অর্থাৎ কাটার পরবর্তি টিক হতে অসীম সময় লাগছে এমনটাই আপনার মনে হবে। ট্রলির লাইনের পাশে স্থির দাঁড়িয়ে থাকা কেউ কিন্তু ঘড়িটিকে স্বাভাবিকভাবেই চলতে দেখবে। এই থট এক্সপেরিমেন্ট থেকে আমরা বুঝতে পারি কোন ঘড়ির সাপেক্ষে আলোর বেগে গেলে ঘড়িটিকে আমরা স্থির দাঁড়িয়ে যেতে দেখবো। যদিও থট এক্সপেরিমেন্টটি সম্পূর্ণরুপে সঠিক নয় কিন্তু এটি আমাদের সময়ের আপেক্ষিকতা বুঝতে কিছুটা সাহায্য করে।

এবার আরেকটু ভাল করে আমরা বিষয়টা বোঝার চেষ্টা করি। মনে করুন একটা কাচের তৈরি স্পেস শিপের ভেতরে আপনার বন্ধু বসে আছে। এই স্পেস শিপটি আপনার সাপেক্ষে সমবেগে অনেক বেশি গতিতে চলছে। আপনি স্পেশ শিপের বাইরে একটি খোলা মাঠে দাঁড়িয়ে থেকে স্পেস শিপটি দেখছেন। স্পেস শিপের মাঝে আপনার বন্ধু দুইটি সমান্তরাল আয়না এমনভাবে রাখল যাতে আলো এক আয়না থেকে প্রতিফলিত হয়ে গিয়ে অন্য আয়নায় গিয়ে আঘাত করে। আয়না দুটির মাঝে একটি নির্দিষ্ট দূরত্ব বিদ্যমান। এই আয়না আর আলোর সমন্বয়ে তাহলে আপনার বন্ধু একটি আলোর ঘড়ি বানিয়ে ফেলল যা একটি নির্দিষ্ট সময় পর পর এক আয়না থেকে আরেক আয়নায় আঘাত করে। রকেটটি কিন্তু আলোর বেগের দিকের সাথে সমকোণে ছুঁটে চলেছে।

dtrvyn

এখন রকেটের ভেতর আপনার যে বন্ধুটি বসে আছে সে দেখবে আলো প্রথমে এক আয়না থেকে অন্য আয়নায় একদম সোজাসুজি গিয়ে আঘাত করছে। তারপর সোজাসুজি ফিরে আসছে। স্পেস শিপটি স্থির অবস্থাতেও আপনার বন্ধুটি আলোর উঠা নামা ঠিক এমনই দেখতো ঠিক যেমনটি সে গতিশীল অবস্থায় দেখছে।

rxctvybun

আপনার বন্ধু আলোর ওঠা নামা যেমনটি দেখবে

কিন্তু আপনি যখন এক সবুজ মাঠে দাঁড়িয়ে এই আলোর উঠা নামা দেখবেন তখন কিন্তু আপনি তাকে সোজাসুজি উপড়ে নিচে যাওয়া আসা করতে দেখবেন না। দেখবেন কিছুটা বেঁকে যেতে। আপনি যখন একটি নদীতে সাঁতার কাটতে যান তখন স্রোতের সাথে লম্বালম্বি সাঁতার কাটলে আপনাকে স্রোত যেমন একটু বাঁকা পথে নিয়ে চলে যাবে অনেকটা তেমন। স্রোত আপনাকে বাঁকা পথে নিয়ে যাবে কারণ হল, স্রোতের বেগ আর আপনার বেগ সমকোণে থাকার কারণে এ দুটোর মিলিত বেগ আপনাকে এ দু দিকের মাঝামাঝি একটি বাঁকা পথে যেতে বাধ্য করে। ঠিক তেমনি আলোর সমকোণে স্পেস শিপটি চলায় আলোর বেগ এবং রকেটের বেগ আলোকে বেশ কিছুটা বাঁকিয়ে দেবে। রকেটের ভেতরে থাকা আপনার বন্ধু স্পেস শিপের ভেতরে থাকায় স্পেস শিপটির বেগ অনুভব করবেনা, শুধু আলোর বেগ তার কাছে দৃশ্যমান হবে। কিন্তু আপনি বাইরে থাকায় আলো আর স্পেস শিপ দুটির বেগই দেখছেন। তাই আলোকে কর্ণ বরাবর বেঁকে যেতেও দেখছেন। আর আলোকে আয়নাটিতে আঘাত করে আবার নিচের আয়নায় ফেরত আসতে হলে নিচের ছবির মতো বাঁকা পথ অনুসরণ করতেই হবে। কারণ আলো উপড়ে আয়নায় যেতে যেতে উপড়ের আয়নাটিও স্পেস শিপের বেগের কারণে কিছুটা সামনে এগিয়ে গিয়েছে। নিচের (a) ছবিতে দেখানো হয়েছে স্পেস শিপ বা, রকেটের ভেতরের বন্ধুটি কি দেখবে এবং (b) ছবিটিতে দেখানো হয়েছে যে আপনি বাইরে থেকে কি দেখবেন।

এ ছবি থেকে আমরা দেখতে পাচ্ছি যে, রকেটে বসা একজন আলোকে একবার উপড়ে নিচে আয়নায় ধাক্কা খেতে যে দূরত্ব অতিক্রম করতে দেখবে স্পেশ শিপের বাইরে স্থির দাঁড়িয়ে থাকা একজন তার চেয়ে বেশি দূরত্ব অতিক্রম করতে দেখবে।

এখন আমরা জানি, বেগ=দূরত্ব/সময়। বা, সময়=দূরত্ব/বেগ। এক্ষেত্রে আমরা আলোর তৈরি ঘড়ি দ্বারা সময় পরিমাপ করেছি। তাই এখানকার দূরত্ব হবে আলোর অতিক্রান্ত দূরত্ব। আর বেগ হবে আলোর বেগ। কিন্তু আইনস্টাইনের ২য় স্বীকার্য থেকে আমরা জানি যে, আলোর বেগ সর্বদা সকল পর্যবেক্ষকের সাপেক্ষে ধ্রুব। তাহলে সময় নির্ভর করছে শুধুমাত্র আলোর অতিক্রান্ত দূরত্বের উপড়। এখন রকেটের ভেতরে থাকা বন্ধুর কাছে আলোর অতিক্রান্ত দূরতে বাইরে থাকা বন্ধুর চেয়ে অনেক কম। অর্থাৎ, রকেটের ভেতরে থাকা বন্ধুর মাপা সময় বাইরের বন্ধুর মাপা সময়ের চেয়ে কম হবে। এটাই কাল দীর্ঘায়ন। রকেটের বেগ যত বেশি হবে আলো তত বেঁকে যাবে। ফলে আলোর তখন আরো বেশি দূরত্ব অতিক্রম করতে হবে। ফলে কাল দীর্ঘায়ন আরো বেশি হবে। অর্থাৎ, আপনার বেগ যত বেশি হবে, আপনার স্পেশ শিপের বাইরে স্থির দাঁড়িয়ে থাকা কোন পর্যবেক্ষকের কাছে আলোর ঘড়িটি তত ধীরে চলবে।

বিষয়টি কিন্তু শুধু আলোর তৈরি ঘড়ির ক্ষেত্রে সত্য নয়। বরং পৃথিবীর যেকোন ধরনের মেকানিক্যাল বা, ডিজিটাল ঘড়ির ক্ষেত্রেও সত্য। অর্থাৎ, গতিশীল অবস্থায় ঘড়ি সত্যি সত্যিই ধীরে চলে। তবে আমাদের দৈনন্দিন জীবনে যে বেগে আমরা চলাচল করি সেই বেগের আমাদের ঘড়ির উপড় কোন প্রভাব নেই বললেই চলে। সময়ের দীর্ঘায়নের এই প্রভাব বুঝতে হলে আমাদের বেগ অনেক বাড়াতে হবে। সবচেয়ে ভাল বোঝা যেতো যদি আমরা আমাদের বেগ আলোর বেগের কাছাকাছি নিয়ে যেতে পারতাম।

এবার আমরা একদম গণিতের সাহায্যে সময়ের এই দীর্ঘায়নটি বোঝার চেষ্টা করব। তাহলে শুরু করা যাক। তবে কেউ যদি চায় তবে এই গণিতের অংশটুকু সম্পূর্ণ বাদ দিয়েও পড়া চালিয়ে যেতে পারে। তবুও বুঝতে কোনরকম সমস্যা হবার কথা নয়।

*গণিত শুরু*

উপড়ে উদাহরণে আমরা দেখেছি রকেটের বাইরে থেকে যে আলোর ঘড়িটি পর্যবেক্ষণ করবে সে আলোকে নিচের আয়না থেক সোজা বেঁকে গিয়ে উপড়ের আয়নায় আঘাত খেয়ে আবার সোজা বেঁকে নিচের আয়নায় আঘাত করতে দেখবে।

ধরি, রকেটের ভেতরে বসে থাকা বন্ধু আলোর নিচের আয়না থেকে উপড়ের আয়নায় যাওয়ার সময় মাপল  । আলোর বেগ c । তাহলে, রকেটে বসে থাকা বন্ধুর কাছে মনে হবে আলো মোট  দূরত্ব অতিক্রম করবে (দূরত্ব= বেগ X সময়)।

আবার বাইরে দাঁড়িয়ে থাকা একজন আলোকে কিছুটা বেঁকে যেতে দেখবে। ফলে আলোর অতিক্রান্ত দূরত্ব বেড়ে যাবে। বাইরে দাঁড়িয়ে থাকা পর্যবেক্ষকের মাপা সময় যদি t হয় এবং আলোর বেগ c হয় তবে এ বাঁকা পথে নিচের আয়না থেকে উপড়ের আয়নায় অতিক্রান্ত দূরত্ব হবে “ct” । রকেটের বেগ v ধরে নিলে এ t সময়ে বাইরে দাঁড়িয়ে থাকা স্থির পর্যবেক্ষক রকেটটিকে vt দূরত্ব সরে যেতে দেখবে। অর্থাৎ, এ তিনটি দূরত্ব এক ছবিতে প্রকাশ করলে আমরা উপড়ের চিত্রটি পাবো।

আমরা দেখতে পাচ্ছি চিত্রটিতে একটি সমকোণী ত্রিভুজের সৃষ্টি হয়েছে (চিত্রের শুধু বাম পাশের অংশটি বিবেচনা করি)। তাহলে পিথাগোরাসের সূত্র অনুসারে আমরা লিখতে পারি,

বা,

বা,

বা,

বা,

বা,

                                                                                                                                   ………………………………………….(1)

*গণিত শেষ*

এবার আমরা (1) নম্বর সমীকরণের দিকে একটু লক্ষ্য করি। এখানে t হল স্থির পর্যবেক্ষকের সাপেক্ষে মাপা সময় এবং  হল গতিশীল পর্যবেক্ষকের সাপেক্ষে মাপা সময়। এই ফ্যাক্টরটির সাথে আমরা আগে “ইথারকে বাঁচাতে ফিটজগোরাল্ড-লরেন্টেজের হাইপোথিসিস” নামক লেখায় পরিচিত হয়েছি। এই ফ্যাক্টরকে বলে লরেন্টজ ফ্যাক্টর। যদি আমরা v এর মান c এর চেয়ে বেশি বসায় তাহলে,  ফ্যাক্টরটির  অংশটি ১ এর চেয়ে বড় হয়ে যায় এবং বর্গমূলের মাঝে একটি মাইনাস বা, ঋণাত্মক চিহ্ন আসে। বর্গমূলের ভেতরে ঋণাত্মক চিহ্ন আসলে তাকে জটিল সংখ্যা বলে। তাই কোন কিছুই আসলে আলোর চেয়ে বেশি বেগে যেতে পারে না। যদি v এর মান c এর সমান হয় তাহলে  এর মান শূন্য হয়। কারণ তখন  হয়ে যায়। ভাগ চিহ্নের নিচে বা, হরে শূন্য আসলে গণিতের সেই অবস্থাকে অসঙ্গায়িত অবস্থা বলে। অনেক সময় এ ধরণের ভাগ ফলকে অসীমও বলা হয়ে থাকে। অর্থাৎ, যদি কেউ আলোর বেগে গতিশীল হয় তাহলে তার ১ সেকেন্ড পৃথিবীর অসীম সময়ের সমান হয়ে যাবে। আসলেই কি গতিশীল বস্তুর সময় ধীরে চলে? আসলেই কি কোন বস্তু আলোর বেগে যেতে পারে?

Image result

পরবর্তিতে উদাহরণ এবং গণিতের সাহায্যে বিষয়গুলো আরো ভালভাবে বোঝার চেষ্টা করব আমরা। সে পর্যন্ত সবাই ভাল থাকবেন। ধন্যবাদ।

আইনস্টাইনের ঘড়ি
Comments

কপিরাইট © ২০১৬ জিরো টূ ইনফিনিটি। সর্বস্বত্ত সংরক্ষিত। Powered by Bintel

.

To Top