in

প্রতিদিনের জীবনে আপেক্ষিকতার নিদর্শন

পদার্থবিজ্ঞানকে কাঁপিয়ে দেয়া আবিষ্কারগুলোর মাঝে অন্যতম হলো আইন্সটাইনের আপেক্ষিক ত্বত্ত। সময় আর স্থান নিয়ে আমাদের চিরায়ত ধারণা পুরোপুরি পাল্টে দেয় এটি। আপেক্ষিক ত্বত্তের একটি স্বীকার্য হলো কোনো একটি ঘটনার ফলাফল ভিন্ন ভিন্ন গতিতে চলমান সিস্টেমে ভিন্ন হতে পারে। যদিও ভিন্ন ফলাফলের সবকটিই গাণিতিক ও পদ্ধতিগতভাবে সঠিক। কারণ সবকিছুই আপেক্ষিক।

যেমন আলোক বেগের কাছাকাছি গতিতে ছুটে চলা কোনো রকেটে কয়েক ঘন্টা পার করে কেউ পৃথিবীতে ফিরে এলে দেখবে এখানে কয়েকশ বছর পার হয়ে গেছে। আবার পর্যবেক্ষক কোনো স্থির গাড়ির যে দৈর্ঘ্যে মাপবে, গাড়িটি অতি দ্রুত বেগে চলা শুরু করলে স্থির পর্যবেক্ষক গাড়ির বেগের দিক বরাবর এর দৈর্ঘ্য আগের তুলনায় কম পরিমাপ করবে। এই দুই প্রতিক্রিয়াকে বলা হর কাল দীর্ঘায়ন আর দৈর্ঘ্য সংকোচন।

সাধারণভাবে মনে হতে পারে যেহেতু কেবলমাত্র আলোর গতির কাছাকাছি অতি দ্রুত বেগে চলতে গেলেই আপেক্ষিকতা বিবেচনায় নেয়া প্রয়োজন তাই এটি দৈনন্দিন জীবনে কোনোরূপ প্রভাব ফেলে না।

কিন্তু বাস্তবতা হলো প্রতিদিন খুব সাধারণ কাজের মধ্যেও আমরা আইনস্টাইনের বিশেষ আপেক্ষিকতা ব্যবহার করছি! আইনস্টাইনের বিশেষ আপেক্ষিকতার তত্ত্ব প্রকাশের ১০০ বছরেরও বেশি সময় পর দেখা যাক আপেক্ষিকতা কীভাবে আমাদের দৈনন্দিন জীবনকে প্রভাবিত করে চলেছে। এখানে চারটি ঘটনার উল্লেখ করছি।

জিপিএস

স্মার্টফোন হাতে পাওয়ার পর আমরা সবাই কমবেশি জিপিএস বা গ্লোবাল পজিশনিং সিস্টেম ব্যবহার করেছি। কোনো স্মার্টফোনের বর্তমান অবস্থান জানতে জিপিএস সিস্টেম একে প্রতিবার স্যাটেলাইটের সাথে সংযোগ প্রদান করে। স্যাটেলাইটগুলো পৃথিবীপৃষ্ঠ থেকে নির্দিষ্ট উচ্চতার কক্ষপথে প্রতি ঘণ্টায় প্রায় ১০ হাজার কিলোমিটার বেগে পৃথিবীকে প্রদক্ষিণ করে।

যদিও এই বেগ আলোর বেগের প্রায় হাজার গুণ কম, আপেক্ষিকতার প্রভাবে বিশাল কোনো সময়ের পার্থক্য ঘটে যাওয়ার মতো কোনো ভয় নেই, তারপরও এই স্যাটেলাইটগুলোতে প্রায় ৪ মাইক্রোসেকেন্ডের মতো সময় ব্যবধান ঘটে। সেই সাথে মহাকর্ষের প্রভাবে সৃষ্ট কাল দীর্ঘায়ন যোগ করলে সময় ব্যবধান হয় ৭ মাইক্রোসেকেন্ড।

আপেক্ষিক তত্ত্বের রহস্যটাই এখানে। স্যাটেলাইটের সময় পৃথিবীর সময়ের তুলনায় দ্রুত যেতে থাকে এবং প্রতি ঘন্টায় আমাদের কাছে তার বয়স/সময় তার আসল বয়সের চেয়ে ৭ মাইক্রোসেকেন্ড বেশি বলে গণ্য হয়।

৭ মাইক্রোসেকেন্ডে চোখের পাতাও ফেলা যায় না কিন্তু কাল দীর্ঘায়নের প্রভাব বিবেচনায় না নিলে জিপিএস পৃথিবীতে আমাদের সঠিক অবস্থান দেখাতে পারবে না। এক দিন পর দেখা যাবে সে আমাদের আসল অবস্থানের চেয়ে ৮ কিলোমিটার দূরের কোথাও আমাদের অবস্থান দেখাচ্ছে। এজন্য স্যাটেলাইটে কাল দীর্ঘায়ন প্রভাব বিবেচনা করে অবস্থান নির্ণয়ের জন্য বিশেষভাবে প্রোগ্রাম করা থাকে।

স্বর্ণের রং

স্বর্ণের উজ্জল হলদে বাদামী রঙের কারণে হাজার বছর ধরে এটি অলংকার উপাদান হিসেবে ব্যবহৃত হয়ে আসছে। কিন্তু আমরা কি জানি এই রঙের অন্যতম কারণ আপেক্ষিকতা! স্বর্ণ থেকে যে আলো বেরিয়ে আসে, আপেক্ষিকতা বিবেচনায় না নিলে তা হওয়ার কথা সিলভার রঙের। কিন্তু আমরা স্বর্ণের রঙ দেখি প্রায় লাল হলুদ। কেন এটা ঘটছে সেটি ব্যাখ্যা করার জন্য স্বর্ণের ইলেকট্রন বিন্যাসের দিকে একটু মনযোগ দিতে হবে।

এর পরমাণুতে মোট ৭৯ টি ইলেকট্রন আছে যারা কেন্দ্রের ৭৯ টি প্রোটন ও নিউট্রনকে কেন্দ্র করে ঘুরছে। সবচেয়ে কাছের 1s অরবিটালের ইলেকট্রন দুটি আলোর গতির প্রায় অর্ধেক (0.5c) বেগে ঘুরছে। এই মাত্রাতিরিক্ত গতিবেগ না থাকলে তারা কেন্দ্রের ধনাত্মক চার্জের প্রচণ্ড আকর্ষণকে কাটাতে পারতো না, কেন্দ্রেই পড়ে বিলিন হয়ে যেত।

আপেক্ষিক ত্বত্ত অনুযায়ী আমরা জানি বেগ বৃদ্ধি পেলে গতির দিক বরাবর দৈর্ঘ্য সংকোচন ঘটে। 1s ইলেকট্রনের প্রচণ্ড গতির কারণে এই অরবিটালকে গোলাকারের বদলে লম্বাটে দেখায় এবং ইলেকট্রন দুটি কেন্দ্রের আরো কাছে চলে এসেছে বলে মনে হয়। ইলেকট্রনের লাফ দিয়ে উচ্চ কক্ষপথে যেতে শক্তি শোষণ করে নিতে হয় এবং স্বর্ণ এক্ষেত্রে অতিবেগুনী রশ্মি শোষণ করে যা আমাদের দৃষ্টি সীমার বাইরে।

কিন্তু রিলেটিভিটি বিবেচনায় নিলে, যা স্বর্ণের ইলেকট্রন কক্ষপথগুলোকে সংকুচিত ধরে নেয়, গোল্ড অতিবেগুনীর চেয়ে কম কম্পাঙ্কের নীল দৃশ্যমান আলো শোষণ করে। ফলে বর্ণালীর লাল রঙের আলোগুলোই কেবল আমাদের চোখে এসে পৌছতে পারে এবং আমরা স্বর্ণের রং দেখতে পাই লালচে হলুদ।

তড়িৎচুম্বক

প্রাকৃতিকভাবে চুম্বক ধর্ম থাকে লোহার মতো অল্পসংখ্যক কিছু ফেরোম্যাগনেটিক ধাতুতে। কিন্তু যেকোনো ধাতুকে তারের মত পেঁচিয়ে কয়েল বানিয়ে তার মধ্য দিয়ে তড়িৎ চালনা করা হলে, সেটি যে ধাতুই হোক না কেন তা চুম্বকত্ব বা চুম্বক ধর্ম লাভ করে। এভাবে তৈরী করা চুম্বককে বলা হয় তড়িৎচুম্বক। তড়িৎচুম্বকের একটি বিশেষ বৈশিষ্ট্য হলো এটি কেবল গতিশীল চার্জের উপর প্রভাব ফেলে, স্থির চার্জের উপর এর কোনো প্রভাব পড়ে না। কারণ ব্যাখ্যার জন্য আবারো উপস্থিত স্পেশাল রিলেটিভিটি।

তড়িৎ প্রবাহ মূলত মুক্ত ইলেকট্রনের প্রবাহ। ধাতুতে পরিবহণ ব্যান্ডের মুক্ত ইলেকট্রনসমূহ তড়িত প্রবাহের সময় সমস্ত ধাতুতে গতিশীল হয় এবং ধাতুর প্রোটন বা নিউক্লিয়াস স্ট্রাকচার স্থির থাকে।

এখন কোনো স্থির চার্জকে যদি তড়িত চুম্বকের কাছে রাখা হয়, যদিও তড়িত প্রবাহ ঘটছে কিন্তু একক আয়তনে ইলেকট্রন ও প্রোটনের পরিমাণ সমান থাকায় ধাতুর নিট চার্জ থাকছে না যা ওই স্থির চার্জকে আকর্ষণ করবে। যদি গতিশীল চার্জ হয় এবং সেটি ধাতব তারের সমান্তরালে চলে তখন রিলেটিভিটির কারণে তারের আপাত দৈর্ঘ্য সংকোচন ঘটে এবং স্থির প্রোটনের ঘনত্ব বৃদ্ধি পায়। ফলে ধাতব তারটি ধনাত্মক আধানে আহিত বলে বিবেচিত হয় এবং এটি গতিশীল চার্জ আকর্ষিত বা বিকর্ষিৎ হয়।

পুরাতন টিভি সেট

যারা এখনো LED মনিটরে টিভি দেখেন না, পুরাতন বাক্স সাইজ টিভির যুগে আছেন তারা নিজেদের ভাগ্যবান ভাবতে পারেন, কারণ টিভি দেখার প্রতি মুহূর্তে নিজের অজান্তেই হয়ত মহান রিলেটিভিটির সৌন্দর্য্য উপভোগ করতে পারছেন।

পুরাতন টিভি বাক্সের সাইজ বিশাল হবার কারণ হলো এর পিছনে একটি কেথোড রশ্মি টিউব থাকে যা ইলেকট্রনকে প্রচণ্ড গতিতে টিভি স্ক্রিনে নিক্ষেপ করতে পারে। টিভি স্ক্রিনটি বিশেষ প্রলেপ দেয়া যা ইলেকট্রনের আঘাতে নির্দিষ্ট বর্ণের আলোকরশ্মি বিকিরণ করতে পারে। এভাবেই আমরা টিভি স্ক্রিনে রঙ্গিন ছবি দেখতে পাই। কিন্তু কেথোড টিউব থেকে ইলেকট্রন নিক্ষেপ করে করে সঠিক জায়গায় ফেলা এত সহজ কাজ না, এজন্য স্ক্রিনে তড়িত চুম্বক ব্যবহার করা হয়, যাতে ছবি পরিষ্কার দেখা যায়।

এই ফায়ার করা ইলেকট্রনগুলো আলোর গতির প্রায় এক তৃতীয়াংশ গতিতে চলে। এজন্য রিলেটিভিটির কারনে সৃষ্ট দৈর্ঘ্য সংকোচনকে বিবেচনায় নিয়েই ইঞ্জিনিয়াররা তড়িত চুম্বক ডিজাইন করেন, যা স্ক্রিনে ক্লিয়ার আর অডিওর সাথে মিল রেখে সঠিক সময়ে ছবি তৈরী করে।

তথ্যসূত্রঃ IFLScience, http://www.iflscience.com/physics/4-examples-relativity-everyday-life

featured image: helix.northwestern.edu

ডিম, উপবৃত্ত ও মুক্তিবেগ

হিপনোটিজমের পেছনের বিজ্ঞান