হাবল কীভাবে গ্যালাক্সির বেগ নির্ণয় করেছিলেন?

গ্যালাক্সিগুলো প্রতিনিয়ত অপসারিত হচ্ছে আমাদের কাছ থেকে। এ নিয়ে বিজ্ঞানী এডউইন হাবলের সূত্র আছে। সূত্রের সাহায্যে দূরবর্তী গ্যালাক্সির গতিবেগ সম্বন্ধে ধারণা পাওয়া যায়।

হাবল তো আর এমনিতেই এই ধারণাটি পাননি। তাকে পরীক্ষা নিরীক্ষা করতে হয়েছে। পরীক্ষা নিরীক্ষার সময় হাবল কীভাবে দূরবর্তী গ্যালাক্সির বেগ নির্ণয় করলেন? এর জন্য তিনি সেসব গ্যালাক্সি থেকে নির্গত আলোর লাল সরণ বিশ্লেষণ করেছিলেন। লাল সরণ বিশ্লেষণ করলে গতিশীল বস্তুর বেগ সম্পর্কে ধারণা পাওয়া যায়। এ ব্যাপারটি একটু ব্যাখ্যা করা দরকার।

ধরি একজন দর্শক একটি রাস্তার পাশে দাঁড়িয়ে আছে এবং একটি গাড়ি সাইরেন বাঁজাতে বাঁজাতে যাচ্ছে। গাড়িটি যখন দর্শকের কাছ থেকে দূরে চলে যায় তখন সাইরেনের শব্দের তীক্ষ্ণতাও কমে যায়। গাড়ির গতিবেগ যত বেশি হবে তীক্ষ্ণতার পরিবর্তনও হবে তত বেশি। কোনোভাবে যদি সাইরেনের শব্দের কম্পাংক জানা যায় তাহলে সেখান থেকে গাড়িটির বেগ বের করা সামান্য কিছু গাণিতিক হিসেবের ব্যাপার মাত্র। সাইরেনের প্রারম্ভিক কম্পাংক এবং দর্শক কর্তৃক গৃহীত কম্পাংককে তুলনা করলেই গাড়িটির গতিবেগ বের হয়ে যাবে।

কোনো একটি উৎস যদি আলো বা শব্দের মতো কোনো সিগন্যাল প্রেরণ করতে থাকে তাহলে তার প্রারম্ভিক সিগন্যালগুলো একটি নির্দিষ্ট পরিমাণ কম্পন সম্পন্ন করবে। কিন্তু যখন এই সিগন্যাল কোনো দর্শকের কাছে পৌঁছুবে তখন দর্শকের সাপেক্ষে এর কম্পনের পরিমাণ ভিন্ন হতে পারে।

দর্শকের সাপেক্ষে উৎস কত বেগে চলমান কিংবা উৎসের সাপেক্ষে দর্শক কত বেগে চলমান তার উপর নির্ভর করে সিগন্যালের কম্পন কত হবে। উৎস যদি দর্শকের কাছে আসতে থাকে তাহলে দর্শক সিগন্যালের অধিক কম্পন অনুভব করবে। কারণ সেক্ষেত্রে সিগন্যালের কম্পন বা স্পন্দনগুলো ঘন হয়ে যায়। পক্ষান্তরে উৎস যদি দর্শকের কাছ থেকে দূরে চলে যেতে থাকে তাহলে দর্শক সিগন্যালের স্বল্প কম্পন অনুভব করবে।

চিত্র: সাইরেনের কম্পাংক জানলেই বের হয়ে আসবে গাড়ির গতিবেগ। ছবি: সিকে

চমকপ্রদ এই ব্যাপারটি আবিষ্কার করেছিলেন অস্ট্রিয়ান পদার্থবিজ্ঞানী ক্রিশ্চিয়ান জোহান ডপলার (১৮০৩–১৮৫৩)। তার নাম অনুসারেই সিগন্যাল বা তরঙ্গের বিশেষ এই বৈশিষ্ট্যকে বলা হয় ডপলার প্রভাব। বিখ্যাত একটি পরীক্ষণের মাধ্যমে শব্দের ডপলার প্রভাবের সঠিকতা যাচাই করে দেখেছিলেন ডাচ বিজ্ঞানী ক্রিস্টফ হেনড্রিক (১৮১৮–১৮৯০)।

দূরবর্তী গ্যালাক্সির বেগ নির্ণয়ের জন্য বিজ্ঞানী এডউইন হাবল এই ডপলার প্রভাবকেই ব্যবহার করেছিলেন। দূরবর্তী গ্যালাক্সি হতে নির্গত আলোর স্বাভাবিক কম্পাংক এবং ঐ একই আলোর দর্শক কর্তৃক গৃহীত কম্পাংকের মাঝে পার্থক্য আছে। এই পার্থক্য থেকেই হাবল তাদের বেগ নির্ণয় করেছিলেন।

কীভাবে এই প্রক্রিয়াটি সম্পন্ন হয়? নিম্নবর্ণিত প্রক্রিয়ার মাধ্যমে তা অনুধাবন করা যাবে। তড়িৎচুম্বকীয় বিকিরণের অনেকগুলো রূপ আছে। তাদের মাঝে একটি হলো আলো। এই বিকিরণকে তরঙ্গের মতো করে সাদামাটাভাবে নীচের চিত্রের মাধ্যমে প্রকাশ করা যায়। কয়েকটি শীর্ষ আছে এখানে। দুটি শীর্ষের মধ্যবর্তী দূরত্বকে বলা হয় তরঙ্গদৈর্ঘ্য। এই বিকিরণের তরঙ্গদৈর্ঘ্য যখন ০.০০০০২ থেকে ০.০০০১ সেন্টিমিটারের মাঝে থাকবে তখন একে আমরা বলি ‘আলো’। কারণ তরঙ্গদৈর্ঘ্যের এই সীমা পর্যন্ত আমাদের চোখ সংবেদনশীল।

চিত্র: দুই শীর্ষের মধ্যবর্তী দূরত্ব হলো একটি তরঙ্গদৈর্ঘ্য।

এর চেয়ে বড় তরঙ্গদৈর্ঘ্যের বিকিরণ আছে। সেসবের উদাহরণ ইনফ্রারেড, মাইক্রোওয়েভ ও রেডিও ওয়েভ। ইনফ্রারেড বিকিরণ হলো তাপ। উত্তপ্ত বস্তু থেকে এটি বের হয়। আলোর চেয়ে ছোট তরঙ্গদৈর্ঘ্যের বিকিরণ আছে। এর উদাহরণ আল্ট্রাভায়োলেট, এক্স-রে এবং গামা রে। নীচের সারণিতে এই বিকিরণগুলোর তরঙ্গদৈর্ঘ্যের পরিমাণ উল্লেখ করা হলো।

বিকিরণের প্রকৃতি তরঙ্গদৈর্ঘ্য (সেন্টিমিটার)
রেডিও ১০ এর চেয়ে বড়
মাইক্রোওয়েভ ০.০১ – ১০
ইনফ্রারেড (তাপ) ০.০০০১ – ০.০১
দৃশ্যমান আলো ০.০০০০২ – ০.০০০১
অতিবেগুনী রশ্মি ১০-৭ – ০.০০০০২
এক্স-রে ১০-৯ – ১০-৭
গামা রে ১০-৯ এর চেয়ে ছোট

সারণি: তরঙ্গদৈর্ঘ্য ও বিকিরণের প্রকৃতি

তরঙ্গদৈর্ঘ্য যা-ই হোক, সকল তড়িৎচুম্বক তরঙ্গ একই বেগে চলে। সকলের বেগই আলোর বেগের সমান। তরঙ্গ নিয়ে আলোচনা করতে গেলে ‘কম্পাংক’ নামে একটি বিষয়ের সাথে পরিচিত হতে হয়। কোনো বিকিরণ প্রতি সেকেন্ডে যতগুলো কম্পন সম্পন্ন করে তাকে বলা হয় কম্পাংক। পূর্ববর্তী চিত্রে কতগুলো পূর্ণ তরঙ্গ দেখানো হয়েছে। একটি পূর্ণ তরঙ্গ সম্পন্ন হলে একে বলা যায় একটি কম্পন।

প্রতি সেকেন্ডে এরকম হাজার হাজার কিংবা লক্ষ লক্ষ কম্পন সম্পন্ন করে তড়িৎচুম্বকের একেকটি বিকিরণ। তরঙ্গদৈর্ঘ্য এবং কম্পাংক পরস্পর সম্পর্কিত। আলোর বেগকে তরঙ্গদৈর্ঘ্য দিয়ে ভাগ করলে কম্পাংক পাওয়া যায়। এ হিসেবে তরঙ্গদৈর্ঘ্য যত বড় হবে বিকিরণের কম্পাংক তত কম হবে। উল্টোভাবে তরঙ্গদৈর্ঘ্য যত ছোট হবে কম্পাংক তত বেশি হবে।

কোনো নক্ষত্র কিংবা কোনো গ্যালাক্সি সকল তরঙ্গদৈর্ঘ্যেই তড়িৎচুম্বক তরঙ্গ বিকিরণ করে। নক্ষত্র বা গ্যালাক্সির অভ্যন্তরে ঘটা ভিন্ন ভিন্ন প্রক্রিয়া (mechanism)-র ফলে ভিন্ন ভিন্ন তরঙ্গের বিকিরণ নিঃসৃত হয়। একটি উদাহরণ দেয়া যায়। নক্ষত্রের অভ্যন্তরে প্রতিনিয়ত নিউক্লিয়ার বিক্রিয়া ঘটে চলছে। এর ফলে সেখানে প্রচুর পরিমাণে তাপ ও আলোক শক্তি উৎপন্ন হচ্ছে। নক্ষত্র সেই তাপ ও আলোক শক্তিকে বিকিরণের মাধ্যমে চারদিকে নিঃসরণ করে দিচ্ছে এবং ধীরে ধীরে শীতল হচ্ছে।

চিত্র: নক্ষত্রগুলো প্রতিনিয়ত বিকিরণের মাধ্যমে শীতল হচ্ছে। ছবি: নাসা/উইকিমিডিয়া কমন্স

বিশাল নক্ষত্র ছেড়ে অতি ক্ষুদ্র জগতে গেলেও দেখা যাবে সেখানে বিকিরণ হচ্ছে। বৈদ্যুতিকভাবে চার্জিত কণার গতির ফলেও বিকিরণ তৈরি হয়। যেমন ইলেকট্রন ও প্রোটন। এদের দ্বারাই জগতের সকল বস্তু গঠিত। এই বিকিরণ নিঃসৃত হবার সময় চার্জিত বস্তু থেকে শক্তি বহন করে নিয়ে আসে। ফলে বস্তুটি শক্তি হারায়।

সত্যি কথা বলতে কি, সূক্ষ্মভাবে বিচার করে দেখলে, সকল প্রকার বিকিরণই আসলে চার্জিত কণার গতির ফলে সৃষ্টি। যেকোনো পদার্থের মাঝেই তার ইলেকট্রনগুলো এলোমেলোভাবে গতিশীল থাকে। লোহা বা অন্য কোনো ধাতুকে যখন উত্তপ্ত করা হয় তখন আসলে তার মাঝে থাকা ইলেকট্রনের এলোমেলো গতির পরিমাণ বেড়ে যায়। গতি বাড়লে সেখান থেকে তাপ বা ইনফ্রা-রেড তরঙ্গ বিকিরিত হয়।

আরো বেশি উত্তপ্ত করলে সেখানের ইলেকট্রনের গতি আরো বেড়ে যায়। গতি আরো বেড়ে গেলে সেখান থেকে ইনফ্রা-রেডের চেয়েও উচ্চ তরঙ্গের বিকিরণ নিঃসৃত হয়। ইনফ্রা-রেডের চেয়ে উচ্চ তরঙ্গ হলো দৃশ্যমান আলোক রশ্মি। এদের মাঝে সবচেয়ে কাছের হলো লাল রঙের তরঙ্গ। সেজন্যই দেখা যায় লোহার কোনো খণ্ডকে বেশি উত্তপ্ত করলে সেটি লালচে আভা বিকিরণ করে।

উত্তপ্ত লোহা থেকে লালচে আভা বের হয়। এর পেছনে আছে ক্ষুদ্রাতিক্ষুদ্র কণার কার্যকলাপ। ছবি: ড্রিমসটাইম

নক্ষত্র, গ্যালাক্সি এবং তাদের কর্তৃক বিকিরণ সংক্রান্ত আলোচনায় গুরুত্বপূর্ণ একটি বিষয় হলো বর্ণালি বা স্পেকট্রাম। স্পেকট্রোমিটার বা বর্ণালিবীক্ষণ যন্ত্রের সাহায্যে নক্ষত্র বা গ্যালাক্সি থেকে নির্গত বিকিরণের বর্ণালি বের করা হয়। বর্ণালিবীক্ষণের একদম সরলীকৃত রূপ হলো প্রিজম। প্রিজমের মাঝেও বিকিরণের বর্ণালির ক্ষুদ্র একই অংশ দেখা যায়। অন্যদিকে স্পেকট্রোমিটারে বিকিরণের বর্ণালির খুঁটিনাটি বিস্তারিত জানা যায়।

ভিন্ন ভিন্ন বিকিরণকারী বস্তুর বর্ণালি ভিন্ন ভিন্ন বৈশিষ্ট্যের হয়ে থাকে। গ্যালাক্সি থেকে নির্গত বিকিরণ যেমন হয়ে থাকে, নক্ষত্র থেকে নির্গত বিকিরণ তেমন হবে না। আবার এক খণ্ড লোহা থেকে যে বিকিরণ বের হয় তা গ্যালাক্সি কিংবা নক্ষত্র কিংবা অন্য কোনোকিছুর মতো হবে না।

কিছু কিছু নক্ষত্র বা গ্যালাক্সির বাইরের দিকে শীতল গ্যাসের আবরণ থাকে। নক্ষত্র বা গ্যালাক্সির কিছু বিকিরণ ঐ আবরণে শোষিত হয়ে যায়। এই শোষণ একটি নির্দিষ্ট তরঙ্গদৈর্ঘ্যে হয়। কোন তরঙ্গদৈর্ঘ্যের বিকিরণ শোষিত হবে তা নির্ভর করে কোন ধরনের পদার্থে নক্ষত্র বা গ্যালাক্সি আবৃত আছে তার উপর।

গ্যাসীয় আবরণে ক্যালসিয়াম পরমাণু থাকলে বর্ণালির এক অঞ্চলের তরঙ্গদৈর্ঘ্য শোষিত হবে, লোহা থাকলে অন্য অঞ্চলের তরঙ্গদৈর্ঘ্য শোষিত হবে, অন্য কোনো মৌল থাকলে অন্য কোনো তরঙ্গদৈর্ঘ্য শোষিত হবে।

কোন কোন উপাদান কোন কোন তরঙ্গদৈর্ঘ্যের বিকিরণ শোষণ করে তা বিজ্ঞানীরা আগে থেকেই জানেন। গবেষণাগারে সেসব উপাদানকে বিশ্লেষণ করে তারা এটি বের করেছেন।

নক্ষত্র বা গ্যালাক্সির গ্যাসীয় আবরণ যদি বিশেষ কোনো তরঙ্গদৈর্ঘ্যের বিকিরণকে শোষণ করে নেয় তাহলে ঐ নক্ষত্র বা গ্যালাক্সির বর্ণালির মাঝে একটি শূন্যতা তৈরি হবে। যে তরঙ্গদৈর্ঘ্যের বিকিরণ শোষিত হয়েছে, বর্ণালির ঐ তরঙ্গদৈর্ঘ্যের অংশে একটি অন্ধকার অঞ্চল (Dark line) দেখা যাবে। যার অর্থ হলো ঐ অংশের বিকিরণ এসে পৌঁছাতে পারেনি, কোথাও আটকে গেছে।

চিত্র: নক্ষত্র বা গ্যালাক্সির আবরণকারী উপাদানভেদে বর্ণালির বিভিন্ন অংশে অন্ধকার অঞ্চল দেখা যায়। ছবি: নাসা

বিজ্ঞানী হাবল দূরবর্তী গ্যালাক্সি হতে আগত আলো এবং তাদের বর্ণালির অন্ধকার অঞ্চল নিয়ে গবেষণা করলেন। তিনি দেখতে পেলেন বর্ণালির অন্ধকার অঞ্চলটি নিয়মতান্ত্রিকভাবে ক্রমেই বড় তরঙ্গদৈর্ঘ্যের দিকে সরে যাচ্ছে।

অনেকগুলো গ্যালাক্সির বর্ণালি গভীরভাবে পর্যবেক্ষণ ও বিশ্লেষণ করে তিনি এই সিদ্ধান্তে আসলেন যে, গ্যালাক্সিগুলোর ক্রম-অপসারণ বেগের কারণেই বর্ণালিতে এই সরণ ঘটছে। এই সরণই হলো লাল সরণ বা রেড শিফট। বর্ণালির অন্ধকার অংশের সরণ হচ্ছে বড় তরঙ্গের দিকে, আর দৃশ্যমান আলোতে লাল আলোর তরঙ্গদৈর্ঘ্যই সবচেয়ে বড়, তাই এই সরণের নাম দেয়া হয়েছে লাল সরণ।

হাবলই কিন্তু প্রথম নন, মহাজাগতিক বস্তুর বর্ণালিতে অন্ধকার অঞ্চলের উপস্থিতি সম্পর্কে আরো অনেক আগে থেকেই জানা ছিল। জার্মান পদার্থবিদ জসেফ ভন ফ্রনহফার (১৭৪৭ – ১৮২৬) সূর্যের আলোর বর্ণালি সর্বপ্রথমতে অন্ধকার অঞ্চল খুঁজে পেয়েছিলেন। ১৮০২ সালে ইংরেজ রসায়নবিদ উইলিয়াম হাইড ওয়ালাস্টোনও বিকিরণকারী বস্তুর মাঝে অন্ধকার অঞ্চল খুঁজে পান।

চিত্র: এডউইন হাবলের আগেই বিজ্ঞানী ফ্রনহফার নক্ষত্রের বর্ণালিতে অন্ধকার অঞ্চল খুঁজে পান। ছবি: উকিমিডিয়া কমন্স

১৮৬৮ সালের দিকে ইংরেজ জ্যোতির্বিদ উইলিয়াম হিউগিনস (১৮২৪ – ১৯১০) এ সম্পর্কিত বেশ কিছু গবেষণা করেন। তিনি দেখান যে, কিছু উজ্জ্বল নক্ষত্রের বর্ণালির অন্ধকার অঞ্চল নিয়মতান্ত্রিকভাবে তার স্বাভাবিক অবস্থান থেকে ধীরে ধীরে লাল অংশের দিকে কিংবা ধীরে ধীরে নীল অংশের দিকে সরে যাচ্ছে।

তিনি এই ঘটনার ব্যাখ্যা দিয়েছিলেন ডপলার প্রভাবের সাহায্যে এবং এই ব্যাখ্যা ছিল সঠিক। তিনি বলেন, নক্ষত্রগুলো ক্রমান্বয়ে আমাদের নিকটে আসার কারণে কিংবা আমাদের কাছ থেকে দূরে সরে যাবার কারণে এটি হয়েছে।

ক্যাপেলা (capella) নামে একটি উজ্জ্বল নক্ষত্র আছে। উজ্জ্বলতার বিচারে এটির অবস্থান ষষ্ঠ। সূর্যের বর্ণালির তুলনায় ক্যাপেলার বর্ণালিতে ভিন্নতার দেখা পাওয়া যায়। সূর্যের বর্ণালির তুলনায় ক্যাপেলার বর্ণালিতে ভিন্নতার দেখা পাওয়া যায়।

সূর্যের বর্ণালির অন্ধকার অঞ্চলের চেয়ে ক্যাপেলার বর্ণালির অন্ধকার অঞ্চল লাল তরঙ্গের দিকে 0.01% বেশি অগ্রসর হয়ে আছে। যেহেতু লালের দিকে তথা বড় তরঙ্গের দিকে অগ্রসর হচ্ছে তাই এখান থেকে ইঙ্গিত পাওয়া যায় যে, ক্যাপেলা আমদের কাছ থেকে দূরে সরে যাচ্ছে। এই দূরে সরে যাবার বেগ, আলর বেগের 0.01%। অর্থাৎ প্রতি সেকেন্ডে ৩০ কিলোমিটার হারে দূরে সরে যাচ্ছে। আলর বেগ সেকেন্ডে প্রায় ৩০০,০০০ কিলোমিটার।

প্রতি মুহূর্তে দূরে সরে যাচ্ছে ক্যাপেলা নক্ষত্র। ছবি: বব মুলার

পরবর্তী বেশ কয়েক দশক পর্যন্ত বিভিন্ন মহাজাগতিক বস্তু যেমন যুগল নক্ষত্র, শনির বলয় ইত্যাদির বেগ নির্ণয় করতে ডপলার প্রভাব ব্যবহার করা হতো।

তো হাবল কীভাবে জানলেন, বেশি লাল সরণের গ্যালাক্সিগুলো কিংবা বেশি বেগে অপসৃয়মাণ গ্যালাক্সিগুলো বেশি দূরে অবস্থিত? তিনি জেনেছেন কারণ তিনি লক্ষ্য করেছেন গড়পড়তাভাবে যে নক্ষত্রগুলো যত ক্ষীণ (অনুজ্জ্বল) সেগুলোর লাল সরণ তত বেশি। সাধারণভাবে বিবেচনা করলে দেখা যাবে অনুজ্জ্বল বা ক্ষীণ নক্ষত্রগুলোই দূরে অবস্থান করছে।

তবে এখানে একটু সতর্ক হওয়া দরকার। কারণ শুধুমাত্র দূরে অবস্থান করলেই যে গ্যালাক্সি অনুজ্জ্বল হবে এমন নয়। কম পরিমাণে বিকিরণ করার কারণেও উজ্জ্বলতা কম হতে পারে। হতে পারে এর নিজস্ব উজ্জ্বলতাই অল্প, যার কারণে কাছে থাকা সত্ত্বেও ক্ষীণ বলে মনে হচ্ছে। সেজন্য হাবলকে বিভিন্ন ধরনের গ্যালাক্সি নিয়ে গবেষণা করতে হয়েছে।

হিসেবের জন্য তাকে বিশেষ শ্রেণির কিছু গ্যালাক্সিকে বেছে আলাদা করে নিতে হয়েছে যেন হিসেবে ঝামেলা না হয়। বাছাইকৃত এ শ্রেণির গ্যালাক্সিকে বলা হয় ‘মানবাতি’ বা Standard Candle বিশেষ এ শ্রেণির গ্যালাক্সিগুলোর আপাত উজ্জ্বলতা দেখেই বের করা যায় এরা কত দূরে অবস্থিত। যদি কোনো গ্যালাক্সি ‘মানবাতি’ শ্রেণিতে পড়ে এবং এর উজ্জ্বলতা খুব ক্ষীণ হয় তাহলে বুঝতে হবে এটি অবশ্যই অনেক দূরে অবস্থিত আছে। মানবাতির উজ্জ্বলতা যত ক্ষীণ হবে পৃথিবী থেকে তার দূরত্ব তত বেশি হবে।

আবার অন্যদিকে মানবাতি খুঁজে পাওয়াও বেশ দুরূহ কাজ। দুরূহ কর্ম সম্পন্ন করে হাবল দূরবর্তী গ্যালাক্সির আপাত উজ্জ্বলতা এবং তাদের লাল সরণের মাঝে একটি সম্পর্ক খুঁজে পেলেন। এই সম্পর্ক থেকে বলা যায় যে গ্যালাক্সিগুলোর দূরত্ব এবং তাদের অপসরণ বেগও পরস্পর সম্পর্কিত। যেহেতু এই বিশেষ শ্রেণির গ্যালাক্সির উজ্জ্বলতা তাদের দূরত্বের উপর নির্ভর করে এবং দূরত্ব বেশি হলে লাল সরণও বেশি হয় তাই বলা যায় দূরের গ্যালাক্সিগুলো বেশি দ্রুত বেগে অপসারিত হচ্ছে।

চিত্র: এডউইন হাবল

একে বলা যায় আগেভাগেই ফলাফল অনুমান করে নিয়ে পর্যবেক্ষণ করা হয়েছে। স্বাভাবিক নিয়মে সকল শ্রেণির গ্যালাক্সিকে হিসেবের মধ্যে নিয়ে কাজ করলে হয়তো ফলাফলটা এত সহজে পাওয়া যেত না। তাই আগে থেকেই একটা অনুমান করে নিয়েছেন যে, ‘সম্ভবত’ গ্যালাক্সিগুলো দূরে সরে যাচ্ছে। আসলেই দূরে সরে যাচ্ছে কিনা সেটি পর্যবেক্ষণ করার জন্য বিশেষ কিছু গ্যালাক্সিকে আলাদা করে নিয়েছেন যেন হিসেবের জটিলতা কমে যায়। এর মানে আগে থেকেই ফলাফল অনুমান করে নেয়া। এমনিতে বৈজ্ঞানিক গবেষণায় ফলাফল আগে থেকে অনুমান করে নিলে ক্ষেত্রবিশেষে সেটি গবেষণার জন্য ক্ষতিকর হয়ে দাঁড়ায়।

আলোর উৎসের অপসারণ বেগ ছাড়া অন্যান্য প্রক্রিয়াতেও লাল সরণ ঘটতে পারে। যেমন আলো যদি শক্তিশালী মহাকর্ষ ক্ষেত্র সম্পন্ন কোনো উৎস থেকে নির্গত হয় এবং সে আলো যদি দুর্বল মহাকর্ষ ক্ষেত্রে অবস্থান করা কোনো পর্যবেক্ষক বিশ্লেষণ করে তাহলে ঐ পর্যবেক্ষণ আলোর লাল সরণ দেখতে পাবে।

তবে শক্তিশালী মহাকর্ষীয় উৎসের কারণে দূরবর্তী গ্যালাক্সিগুলোর লাল সরণ ঘটছে এমনটা হওয়া অস্বাভাবিক। পর্যবেক্ষণে যে পরিমাণ লাল সরণ পাওয়া গেছে মহাকর্ষীয় ক্ষেত্রের কারণে এত পরিমাণ লাল সরণ ঘটে না। দ্বিতীয়ত, ক্রম-প্রসারণের ফলে লাল সরণের যে সুস্থিত ও নিয়মতান্ত্রিক বৃদ্ধি ঘটেছে তা মহাকর্ষীয় ক্ষেত্রের লাল সরণ দিয়ে ব্যাখ্যা করা যায় না। বিজ্ঞানীরা ঐক্যমতে এলেন যে, গ্যালাক্সির অপসরণ বেগের কারণেই লাল সরণ ঘটছে।

তবে এই ব্যাখ্যার পাশাপাশি বিকল্প ব্যাখ্যাও আছে। সেটি বলছে, অন্ততপক্ষে সামান্য কিছু লাল সরণের পেছনে তাদের পশ্চাদপসরণ দায়ী নয়। এদের ক্ষেত্রে হয় মহাকর্ষীয় ক্ষেত্র দায়ী নাহয় তাদের পেছনে এমন কোনো ভৌত প্রক্রিয়া কাজ করছে যা এখনো আবিষ্কৃত হয়নি।

এ বেলায় আরেকটি সমস্যার দিকে আলোকপাত করা দরকার। হাবলের সূত্র বলছে গ্যালাক্সিগুলোর দূরত্ব যত বেশি হবে তাদের অপসরণ বেগও তত বেশি হবে। এ অপসরণ বেগের নির্দিষ্ট কোনো সীমা নেই। যত খুশি তত পরিমাণে উন্নীত হতে পারে। এদিকে আইনস্টাইনের বিশেষ আপেক্ষিকতা তত্ত্ব বলছে কোনোকিছুর বেগ আলোর বেগের চেয়ে বেশি হতে পারে না। তাহলে গ্যালাক্সির যত খুশি তত বেগে উন্নীত হওয়া কি বিশেষ আপেক্ষিকতা তত্ত্বকে লঙ্ঘন করছে না?

চিত্র: গ্যালাক্সিগুলো কি আসলেই আলোর চেয়ে বেশি বেগে ছুটছে? ছবি: বিগ থিংক

জ্যোতির্বিদরা লাল সরণের পরিমাণকে z দিয়ে প্রকাশ করেন। উৎস হতে নির্গত তরঙ্গের মূল তরঙ্গদৈর্ঘ্য এবং পর্যবেক্ষক কর্তৃক গৃহীত তরঙ্গদৈর্ঘ্যের পার্থক্য (বিয়োগ) বের করা হয়। তারপর ঐ পার্থক্যকে মূল তরঙ্গদৈর্ঘ্য দিয়ে ভাগ করা হয়। তারপর যে মানটি পাওয়া যায় তা-ই হলো z এর মান।

এই z এর সাহায্যে গ্যালাক্সিগুলোর বেগ সহজেই বের করা যায়। আলোর বেগের সাথে লাল সরণ z-কে গুণ করে দিলেই গ্যালাক্সির গতিবেগ পাওয়া যাবে। আলোর বেগ c হলে গ্যালাক্সির বেগ cz। যেমন, কোনো গ্যালাক্সির লাল সরণের মান যদি হয় ০.১৫ তাহলে তার অপসরণ বেগ আলোর বেগের ১৫ শতাংশ। লাল সরণের মান ০.২৫ হলে তার অপসরণ ২৫ শতাংশ।

তবে এ নিয়মটি শুধুমাত্র আলোর বেগের তুলনায় খুব স্বল্প বেগে ধাবমান গ্যালাক্সির ক্ষেত্রে প্রযোজ্য। আলোর বেগের তিন ভাগের এক ভাগের চেয়ে বেশি হলেই এ নিয়ম আর কাজ করে না। এমনিতে বিজ্ঞানীদের পক্ষে খুব বেশি মানের লাল সরণ পর্যবেক্ষণ করা সম্ভব (সেটা যে উৎসেরই হোক), কিন্তু আলোর চেয়ে বেশি বেগে ধাবমান কোনো গ্যালাক্সি পর্যবেক্ষণ করা সম্ভব নয়। আবার তত্ত্ব বলছে লাল সরণ যদি খুব বেশি হয়ে যায় তাহলে উৎসের গতিও আলোর বেগের সমান কিংবা তার চেয়েও বেশি হয়ে যায়।

যে দূরত্বে গেলে গ্যালাক্সিগুলোর অপসরণ বেগ আলোর বেগের সমান হয় সে দূরত্বকে বলা হয় দিগন্ত বা হরাইজন। দিগন্তের বাইরের কোনো গ্যালাক্সিকে পর্যবেক্ষণ করা যম্ভব নয়। তাহলে কি এর মানে এমন দাড়াচ্ছে না যে, বাইরের গ্যালাক্সিগুলোর বেগ আলোর বেগের চেয়ে বেশি? কিছু দিক থেকে বিবেচনা করলে বলা যায়, হ্যাঁ, এদের বেগ আলোর বেগের চেয়ে বেশি। কিন্তু তাতে আইনস্টাইনের বিশেষ আপেক্ষিকতা তত্ত্বের কোনো লঙ্ঘন হচ্ছে না।

কীভাবে? বিশেষ আপেক্ষিকতা তত্ত্বের নিয়ম-নীতি তখনই খাটবে যখন কোনোপ্রকার মহাকর্ষীয় ক্ষেত্রের উপস্থিতি থাকবে না। কিন্তু মহাবিশ্বের সকল ক্ষেত্রেই মহাকর্ষ বিদ্যমান। এই মহাকর্ষীয় ক্ষেত্র স্থান ও কালের প্রকৃতিকে আমূলে পালটে দেয়। আর এটি ঘটে আইনস্টাইনেরই দেয়া সাধারণ আপেক্ষিকতা তত্ত্ব অনুসারে।

ব্যাপারটা এমন না যে কোনো ‘বস্তু’ পর্যবেক্ষকের দৃষ্টি থেকে দূরে সরে যাচ্ছে আলোর চেয়ে বেশি বেগে। এখানে মূলত ‘স্থান’ নিজেই প্রসারিত হয়ে যাচ্ছে আলোর চেয়ে বেশি বেগে। বস্তু হয়তো আলোর বেগের বেশি বেগে চলতে পারে না কিন্তু স্থান ঠিকই পারে। আর ঐ বেশি বেগে চলা স্থানে যদি কোনো বস্তু থাকে তাহলে স্থানের সাথে সাথে বস্তুটিও বেশি বেগেই চলবে। বস্তু হয়তো আলোর চেয়ে বেশি বেগে চলছে না, কিন্তু স্থান তাকে চালিয়ে নিচ্ছে।

যদিও আমরা দিগন্তের বাইরের গ্যালাক্সিগুলোকে দেখতে পাই না, কিন্তু স্থানের প্রসারণের প্রকৃতি থেকে তাদের অস্তিত্ব সম্বন্ধে জানতে পারি।

দিগন্তের বাইরের গ্যালাক্সির গতি নিয়ে যে জটিলতা তৈরি হয়েছে তা সাধারণ আপেক্ষিকতা তত্ত্বের একটি জটিল ফর্মুলার মাধ্যমে সুরাহা করা যায়। তবে এখানে আলচ্য বিষয় অনুধাবন করার জন্য এত সূক্ষ্ম হিসাব নিকাশের প্রয়োজন নেই।

উৎস Islam, Jamal N. (1983), the Ultimate Fate of the Universe, Chapter 3, Cambridge University Press

featured image: scitechdaily.com

প্রতিবেশী গ্যালাক্সির খোঁজে

১৭৮১ সালের শুরুর দিকে চার্লস মেসিয়ের নামে একজন ফরাসী জ্যোতির্বিদ ও ধূমকেতু পর্যবেক্ষক ছিলেন। তিনি ধূমকেতুর মতো দেখতে ১০৩টি নাক্ষত্রিক বস্তুর তালিকা করেন যেন অন্যান্য ধূমকেতু পর্যবেক্ষকরা এদেরকে ধূমকেতু বলে ভুল না করে।

কারণ ধূমকেতু যখন সূর্যের কাছাকাছি থাকে তখন তার লম্বা লেজ বা পুচ্ছ দৃশ্যমান থাকে। ফলে তাদেরকে চেনা যায় সহজে। সূর্য থেকে দূরে অবস্থান করলে লেজ বিলুপ্ত হয়ে যায়। ফলে কোনো কোনো পর্যবেক্ষক তাদেরকে ভুলভাবে নক্ষত্র বলে ধরে নেয়। তৎকালীন সময়ে উন্নত যন্ত্রপাতির সাহায্য ছাড়াই তিনি এমন চমৎকার কাজ করে ফেলেছিলেন। পরবর্তীতে উইলিয়াম হার্শেল, জন হার্শেল, লুই ড্রেয়ার প্রভৃতি বিজ্ঞানীরা এই তালিকার উন্নয়ন করেন

মেসিয়েরের তালিকার অনেকগুলো বস্তু ছিল আমাদের গ্যালাক্সি মিল্কি ওয়ের ভেতরের। তবে মেসিয়েরের তালিকার অনেক বস্তুই ছিল মিল্কি ওয়ে গ্যালাক্সির বাইরের। তাদের মাঝে একটি হলো এন্ড্রোমিডা গ্যালাক্সি। পরিষ্কার আকাশে খালি চোখেই একে দেখা যায়। দেখতে অনেকটা অস্পষ্ট কুয়াশাচ্ছন্ন বস্তু বলে মনে হয়।

৯৬৪ সালে পারস্যের জ্যোতির্বিদ আব্দুর রহমান আল-সুফি তার একটি বইয়ে এর কথা উল্লেখ করেন। বইতে একে ‘একটি ক্ষুদ্র মেঘ’ বলে উল্লেখ করা হয়েছিল। বইয়ের নাম কিতাব সুয়ার আল কাওয়াকিব (Book of Fixed Stars)। পরে জানা যায় এই মেঘটি আমাদের গ্যালাক্সির মতোই আরেকটি গ্যালাক্সি এবং আকৃতির দিক থেকেও এটি আমাদের মিল্কিওয়ের মতোই সর্পিল। আমাদের গ্যালাক্সির সবচেয়ে কাছের প্রতিবেশীও এটিই।

চিত্র: আব্দুর রহমান আল সুফি তার এক বইয়ে এন্ড্রোমিডা গ্যালাক্সির কথা উল্লেখ করেছিলেন।

মেসিয়ের, হার্শেল ও ড্রেয়ার কর্তৃক তৈরিকৃত নেব্যুলির প্রকৃতি সম্বন্ধে ঊনবিংশ শতকের শেষদিকে এবং বিংশ শতকের শুরুর দিকে বড় ধরনের বিতর্ক বিদ্যমান ছিল। কেউ কেউ মনে করতো তাদের তালিকার নাক্ষত্রিক বস্তুর সবগুলোই আমাদের গ্যালাক্সিতে অবস্থিত অন্যদিকে কেউ কেউ মনে করতো তালিকার কোনো কোনো বস্তুর অবস্থান আমাদের গ্যালাক্সির বাইরে।

১৭৫৫ সালের দিকে জার্মান দার্শনিক ইমানুয়েল কান্ট বলেওছিলেন যে, কোনো কোনো গ্যালাক্সির অবস্থান অবশ্যই আমাদের আমাদের গ্যালাক্সির বাইরে। তিনি আরো বলেছিলেন এসব নেব্যুলির কোনো কোনোটির আকৃতি বৃত্তাকার ডিস্কের মতো। অনেক দূরে অবস্থান করে বলে তাদেরকে অনুজ্জ্বল দেখায়।

১৯২০ ও ১৯৩০ সালের মাঝামাঝিতে আমেরিকান জ্যোতির্বিদ এডউইন পাওয়েল হাবল (১৮৮৯ – ১৯৫৩)-এর মাধ্যমে এই বতর্কের অবসান ঘটে। তিনি প্রমাণ করেছিলেন অধিকাংশ নেব্যুলির অবস্থানই আমাদের গ্যালাক্সির বাইরে। তিনি এমন অকাট্যভাবে তা প্রমাণ করেছিলেন যে তা নিয়ে কোনো প্রশ্ন তোলার বা কোনো বিতর্ক তৈরি করার কোনো অবকাশ থাকেনি। তার মাধ্যমে মানুষের মনে মহাবিশ্ব সম্পর্কে বিস্তৃত একটি ধারণা বদ্ধমূল হয়। তিনি যুগান্তকারী এই প্রমাণটি করেছিলেন নেব্যুলির লাল সরণ (Red Shift) পরিমাপ করে।

চিত্র: এডউইন হাবল। ছবি: নাসা

এ সময়কালে যুক্তরাষ্ট্রের লস এঞ্জেলস শহরের কাছে মাউন্ট উইলসনে একটি ১০০ ইঞ্চি টেলিস্কোপের নির্মাণ সম্পন্ন হয়। বিজ্ঞানী এডউইন হাবল ঐ সময় এটিকে ব্যবহার করার সুযোগ পান। শক্তিশালী এই টেলিস্কোপটি ব্যবহারের মাধ্যমেই তিনি প্রথমবারের মতো এন্ড্রোমিডা গ্যালাক্সির প্রকৃতি উদ্ঘাটন করেন। এই গ্যালাক্সিটিতে তিনি একটি সর্পিল আকৃতি খুঁজে পান। উল্লেখ্য আমাদের নিজেদের গ্যালাক্সি যে তা তখনো প্রতিষ্ঠিত হয়নি।

এন্ড্রোমিডার সর্পিল গঠনের অংশগুলোতে তিনি কিছু বিষম তারার দেখা পান। কিছু কিছু তারা আছে যাদের উজ্জ্বলতা একটি নির্দিষ্ট সময় পরপর নিয়মিতভাবে পরিবর্তিত হয়। এধরনের তারাকে বলা হয় বিষম তারা বা Variable star। এরকম তারা অবশ্য আমাদের গ্যালাক্সিতে আরো আগেই আবিষ্কৃত হয়েছিল। এদেরকে সেফিড ভ্যারিয়েবল (Cepheid Variable) নামে ডাকা হতো। এদের মধ্যে বিশেষ কয়েকটিকে বলা হতো ডেলটা সেফাই (Delta Cephei)।

এন্ড্রোমিডার সর্পিল গঠন। ছবি: এনসাইক্লোপিডিয়া ব্রিটানিকা

সময়ের পরিবর্তনের সাথে সাথে এ ধরনের তারার উজ্জ্বলতা বাড়ে-কমে। কেউ যদি সময়ের বিপরীতে উজ্জ্বলতার লেখ চিত্র অংকন করে তাহলে নীচের চিত্রের একটি আকৃতি তৈরি হবে। উজ্জ্বলতার হ্রাস-বৃদ্ধির একটি স্পষ্ট চক্র। সম্পূর্ণ একটি চক্রকে বলা যেতে পারে পর্যায়কাল বা Period।

সময়ের সাথে বিষম তারার উজ্জ্বলতার পরিবর্তন হয়। লেখ থেকে বোঝা যাচ্ছে দ্রুত সময়ে উজ্জ্বল হয় এবং অনুজ্জ্বল হয় তুলনামূলকভাবে ধীর সময়ে। ছবি: TUFOTU

হেনরিয়েটা সোয়ান লেভিট এবং হার্লো শেপলি নামের দুজন আমেরিকান জ্যোতির্বিদ সেফিড তারার প্রকৃত উজ্জ্বলতা ও দৃশ্যমান উজ্জ্বলতার চক্রের মাঝে পারস্পরিক একটি সম্পর্ক খুঁজে পান। প্রকৃত উজ্জ্বলতা বা Intrinsic brightness হলো সেফিড তারার মূল উজ্জ্বলতা। বিজ্ঞানের ভাষায় প্রকৃত উজ্জ্বলতাকে ‘এবসোলুট লুমিনোসিটি’ বলেও ডাকা হয়।

কোনো একটি নাক্ষত্রিক বস্তু সকল দিকে যে পরিমাণ আলো বিকিরণ করে তাকে বলা হয় এবসোলুট লুমিনোসিটি। কিছু কারণবশত আমাদের চোখে এসব তারার মূল উজ্জ্বলতা ধরা দেয় না। এধরনের নাক্ষত্রিক বস্তু আমাদের চোখে আপেক্ষিকভাবে যে পরিমাণ উজ্জ্বল বলে প্রতীয়মান হয় তাকে বলে ‘এপারেন্ট লুমিনোসিটি’। টেলিস্কোপের প্রতি একক ক্ষেত্রফলে নক্ষত্র থেকে যে পরিমাণ আলো এসে আপতিত হয় তাকে বলে এপারেন্ট লুমিনোসিটি বা দৃশ্যমান উজ্জ্বলতা।

বিজ্ঞানী লেভিট ও শেপলি প্রকৃত উজ্জ্বলতা ও দৃশ্যমান উজ্জ্বলতার মাঝে যে সম্পর্ক খুঁজে পান তা লেখচিত্রের মাধ্যমে প্রকাশ করলে অপর পৃষ্ঠায় উল্লেখিত পরবর্তী চিত্রের মতো একটি অবস্থা পাওয়া যাবে। লেখটি একদমই সরল।

লেখ থেকে দেখা যাচ্ছে, কেউ যদি কোনো বিষম তারার উজ্জ্বলতার হ্রাস বৃদ্ধি চক্রের সময় (পর্যায়কাল) সম্পর্কে জানে তাহলে সহজেই এর প্রকৃত উজ্জ্বলতা বের করে নিতে পারবে। বিজ্ঞানী এডউইন হাবল এই পদ্ধতিতেই এন্ড্রোমিডা গ্যালাক্সিতে বিষম তারার অস্তিত্ব খুঁজে পেয়েছিলেন। এই পদ্ধতিকে বলা হয় লেভিট-শেপলি সম্পর্ক।

এখন কেউ যদি কোনো মহাজাগতিক বস্তুর দৃশ্যমান উজ্জ্বলতা এবং প্রকৃত উজ্জ্বলতা সম্পর্কে জানে তাহলে সেখান থেকে বস্তুটির দূরত্বও নির্ণয় করতে পারবে। কারণ দৃশ্যমান উজ্জ্বলতা কত হবে তা নির্ভর করে দূরত্বের উপর। বস্তুর দূরত্ব যত বেশি হবে তার উজ্জ্বলতা তত কম হবে।

এই পদ্ধতি ব্যবহার করে হাবল সিদ্ধান্তে উপনীত হয়েছিলেন যে এন্ড্রোমিডা গ্যালাক্সি ৯ লক্ষ আলোক বর্ষ দূরে অবস্থিত। এত বেশি পরিমাণ দূরত্বে থাকলে তার অবস্থান অবশ্যই আমাদের গ্যালাক্সির বাইরে হবে। কেননা আমাদের সবচেয়ে দূরে যে বস্তুটি অবস্থিত তার চেয়ে প্রায় ১০ গুণ দূরে অবস্থিত এটি। উল্লেখ্য আমাদের গ্যালাক্সির বিস্তৃত ৮০ হাজার থেকে ১ লক্ষ আলোক বর্ষ।

পর্যায়কালের বিপরীতে উজ্জ্বলতার লেখ (সোজা ঢালু রেখাটি)। P যদি হয় উজ্জ্বলতার হ্রাস-বৃদ্ধি চক্রের পর্যায়কাল তাহলে সেখান থেকে অক্ষরেখার উপর লম্ব টেনে তারাটির প্রকৃত উজ্জ্বলতা কত তা বের করা সম্ভব। ছবি: IUFOTU

পরবর্তীতে বিংশ শতাব্দীর চল্লিশের দশকের শেষ দিকে এবং পঞ্চাশের দশকের শুরুর দিকে জার্মান বংশোদ্ভব আমেরিকান জ্যোতির্বিদ ওয়াল্টার বেইড (১৮৯৩ – ১৯৫০) এবং অন্যান্য বিজ্ঞানীরা দেখিয়েছেন এধরনের বিষম তারা আসলে দুই প্রকার। এরা দুই ধরনের নিয়মনীতি মেনে চলে। লেভিট-শেপলি সম্পর্কের আওতার বাইরেও অনেক বিষম তারা আছে। যদিও এই সম্পর্কের মাধ্যমেই এন্ড্রোমিডার দূরত্ব পরিমাপ করেছিলেন এডউইন হাবল, কিন্তু তার পর্যবেক্ষণকৃত বিষম তারা এবং লেভিট কর্তৃক পর্যবেক্ষণকৃত বিষম তারার প্রকৃতি আসলে এক নয়।

হাবল এক্ষেত্রে পর্যায়কাল ও উজ্জ্বলতার ভুল সম্পর্ক ব্যবহার করেছিলেন। যার জন্য তার হিসেবেও ভুল ফলাফল এসেছে। পরবর্তীতে জানা যায় এন্ড্রোমিডা গ্যালাক্সির প্রকৃত দূরত্ব দুই মিলিয়ন আলোক বর্ষ, যেখানে হাবল বলেছিলে এই দূরত্ব ৯ লক্ষ আলোক বর্ষ। তবে হিসেবে ভুল হলেও হাবলের সিদ্ধান্ত সঠিক ছিল, এন্ড্রোমিডা নেব্যুলা আমাদের গ্যালাক্সির বাইরে অবস্থিত।

তথ্যসূত্র- Islam, Jamal N. (1983), The Ultimate Fate of the Universe, Page 13-16, Cambridge University Press থেকে অনুবাদকৃত। 

featured image: outerplaces.com

অজানা অদৃশ্য মহাবিশ্ব

আমাদের সূর্য আকাশগঙ্গা ছায়াপথের ঘূর্ণায়মান বাহুর একপাশে অবস্থান করছে। রাতের আকাশের দিকে খালি চোখে তাকালে আমরা যে এক হাজারের মতো নক্ষত্র দেখতে পাই তার বেশিরভাগই আকাশগঙ্গায় অবস্থিত। খালি চোখে না তাকিয়ে একটি সাধারণ মানের দূরবীন ব্যবহার করলে চোখের সামনে নক্ষত্রের সংখ্যা আরো কয়েক গুণ বেড়ে যাবে। যাকে এখন সাধারণ মানের দূরবীন বলা হচ্ছে একটা সময় কিন্তু বিজ্ঞানীদের সবচেয়ে শক্তিশালী টেলিস্কোপও এর সাথে পাল্লা দিতে পারতো না। তাই খুব স্বাভাবিকভাবেই মানুষের ধারণা ছিল আকাশগঙ্গা ছায়াপথই আমাদের সম্পূর্ণ মহাবিশ্ব। ১৯২০ সালের আগ পর্যন্ত প্রযুক্তি ব্যবহার করে আকাশগঙ্গার চেয়ে বেশি কিছু দেখা সম্ভব ছিল না। প্রযুক্তির উন্নতির সাথে সাথে বিজ্ঞানীদের টেলিস্কোপের ক্ষমতাও বাড়তে লাগল। নতুন নতুন শক্তিশালী টেলিস্কোপ আকাশের দিকে তাক করে বিজ্ঞানীরা একেবারে অবাক হয়ে গেলেন।

১৯২০ সালের দিকে বিজ্ঞানী এডউইন হাবল আবিষ্কার করলেন এই মহাবিশ্ব আকাশগঙ্গা ছায়াপথ চেয়েও অনেক বেশি বড়। আগে যেসব ঝাপসা আলোর বিন্দুকে অনেক দূরবর্তী নক্ষত্র ভাবা হতো, তাদের অনেকগুলোই আসলে আকাশগঙ্গার মতোই আলাদা আলাদা গ্যালাক্সি! জ্যোতির্বিজ্ঞানীরা প্রতিদিন নতুন নতুন গ্যালাক্সি আবিষ্কার করতে শুরু করলেন। সেই সময় Fritz Zwicky ছিলেন ক্যালটেকের প্রফেসর। তিনি Coma cluster-এর গ্যালাক্সিগুলো পর্যবেক্ষণ করছিলেন। আশেপাশের অন্যান্য গ্যালাক্সিগুলোর সাপেক্ষে কোনো একটি গ্যালাক্সির গতিবেগ পর্যবেক্ষণ করে তাদের মধ্যে কতটুকু ভর আছে সেটি বের করা সম্ভব।

প্রফেসর Fritz Zwicky, coma cluster-এর গ্যালাক্সিগুলোর গতিবেগ মেপে নিয়ে তার মধ্যে ঠিক কতটুকু ভর থাকতে পারে তা হিসেব করে বের করে নিলেন। কিন্তু এই ভরকে দৃশ্যমান ভরের সাথে তুলনা করতে গিয়ে কিছুতেই হিসেব মেলাতে পারলেন না। দৃশ্যমান ভর বলতে বোঝানো হয় গ্যালাক্সির যেসব নক্ষত্র আলো বিকিরণ করে কিংবা যেসব ধূলিকণা, গ্যাসের মেঘ নক্ষত্রের আলোকে আটকে দেয়। মোটকথা গ্যলাক্সির দিকে তাকিয়ে আমরা যেটুকু দেখতে পাই তার মোট ভর। Fritz Zwicky-এর হিসেব অনুযায়ী ক্লাস্টারের মধ্যে গ্যালাক্সিগুলোর যে গতিবেগ ততটুকু গতিবেগ অর্জন করতে হলে গ্যালাক্সিগুলোতে তাদের দৃশ্যমান ভরের প্রায় ১৬০ গুণ বেশি ভর থাকা উচিৎ ছিল।

তার মানে অদৃশ্য কোনো ভর গ্যালাক্সিগুলোর এই গতিবেগের জন্য দায়ী। সেই অদৃশ্য ভরকে কোনোভাবেই খুঁজে পাওয়া গেল না। তিনি অনেকভাবে হিসেব করে দেখলেন, একটি বিশাল পরিমাণ অদৃশ্য ভর না থাকলে Coma cluster-এর ভারসাম্য বজায় থাকত না। তিনি এই অদৃশ্য ভরের নাম দিলেন ‘হারানো ভর’ বা Missing matter।

ধরা-ছোঁয়া যায় এমন প্রায় সবকিছুর ভরই দাঁড়িপাল্লার নীতি ব্যবহার করে মেপে বের করে ফেলা যায়। কিন্তু পৃথিবী থেকে অকল্পনীয় দূরত্বে অবস্থিত এসব নক্ষত্র কিংবা গ্যালাক্সির ভর বিজ্ঞানীরা ঠিক কীভাবে মাপেন? পৃথিবীর ভর প্রায়  কেজি, সূর্যের ভর প্রায়  কেজি, বৃহস্পতির ভর প্রায়  কেজি, মিল্কিওয়ের ভর সূর্যের ভরের প্রায়  গুণ, এন্ড্রোমিডা গ্যালাক্সির ভর সূর্যের ভরের প্রায়  গুণ।

কিন্তু এন্ড্রোমিডা গ্যালাক্সির কাছে গিয়ে গ্যালাক্সিটাকে একটা দাঁড়িপাল্লায় নিয়ে ভর মেপে নেয়ার কোনো উপায় নেই। তাই বিজ্ঞানীরা ধরা ছোঁয়ার বাইরের অনেক দূরবর্তী পদার্থের ভর মাপেন একটু বাঁকা পথে। পথটা বাঁকা হলেও পদ্ধতিটি খুব সহজ। আমরা জানি একটি বস্তুর ভর যত বেশি হবে তার মহাকর্ষীয় আকর্ষণ হবে তত বেশি। আর বস্তুটি থেকে দূরত্ব যত বাড়তে থাকবে তার মহাকর্ষীয় আকর্ষণও ততই কমে যাবে (বুধ সূর্যের সবচেয়ে কাছের গ্রহ এবং ঠিক এ কারণেই সূর্যের চারিদিকে নিজের কক্ষপথে ভারসাম্য বজায় রাখতে বুধের গতিবেগ সবচেয়ে বেশি। নেপচুনের গতিবেগ সেই তুলনায় অনেক অনেক কম)। তাই আশেপাশের গ্রহ, নক্ষত্র, গ্যাসের মেঘ ইত্যাদির গতিবেগ এবং দূরত্ব থেকে খুব সহজেই ভরটুক বের করে ফেলা যায়।

2চিত্রঃ বুধ সূর্যের সবচেয়ে কাছের গ্রহ। তাই বুধের গতিবেগ সবচেয়ে বেশি।

একটি ভরকে ঘিরে ঘুরপাক খাওয়া পদার্থের আরেকটি উদাহরণ হলো সর্পিলাকার গ্যালাক্সি। যেসব গ্যলাক্সির একটি অত্যন্ত ভারী কেন্দ্র থাকে এবং গ্যালাক্সির সকল নক্ষত্র সেই ভারী কেন্দ্রকে ঘিরে ঘুরতে থাকে তদেরকে বলা হয় সর্পিলাকার গ্যালাক্সি। তাই ঠিক একইরকম হওয়ার কথা সর্পিলাকার গ্যালাক্সির ক্ষেত্রেও। অর্থাৎ বাইরের দিকের নক্ষত্রগুলোর ঘূর্ণন বেগ কেন্দ্রের দিকে নক্ষত্রগুলোর চেয়ে অনেক কম হবে। বিজ্ঞানী ভেরা রুবিন কিন্তু সেরকমটি দেখলেন না।

3চিত্রঃ সর্পিলাকার গ্যালাক্সি।

মিল্কিওয়ের মতো সর্পিল গ্যালাক্সিগুলোর ঘূর্ণন পর্যবেক্ষণ করতে করতে তিনি দেখলেন গ্যালাক্সিগুলোর কেন্দ্র থেকে দূরে সরে গেলে যেমন নক্ষত্র, গ্যাস আর ধুলিকণার মেঘের গতিবেগ কমে যাওয়ার কথা ছিল, তেমনটি হচ্ছে না। বরং গতিবেগ প্রায় সমান সমান।

ভেরা রুবিনের হিসেব অনুযায়ী গ্যালাক্সিগুলোতে দৃশ্যমান যতটুক ভর আছে এবং সেই ভরের জন্য গ্যালাক্সির মধ্যে নক্ষত্র, গ্যাসের মেঘের যতটুক গতিবেগ নিয়ে ঘোরার কথা ছিল তার তুলনায় এ গতিবেগ প্রায় দশগুণ বেশি। তারমানে নিশ্চয়ই গ্যলাক্সির মধ্যে এমন কোনো পদার্থ আছে যা গ্যালাক্সির এই গতির জন্য দায়ী এবং কোনো এক কারণে আমরা তাদের দেখতে পাচ্ছি না। রুবিন হিসেব করে বের করলেন, এমনটা হবে যদি গ্যালাক্সির মধ্যে অদৃশ্য ভরের পরিমাণ দৃশ্যমান ভরের দশগুণ হয়।

অদৃশ্য পদার্থকে এখন বলা হয় ‘Dark matter’। তারপর থেকে বিজ্ঞানীরা শত শত গ্যালাক্সি পর্যবেক্ষণ করেছেন। সব ক্ষেত্রেই সেই একই ব্যাপার। কিন্তু বহুবার বহুভাবে চেষ্টা করেও বিজ্ঞানীরা কোনোভাবেই ডার্ক ম্যাটার খুঁজে পেলেন না। যে বস্তুকে চোখেই দেখা যায় না তাকে খুঁজে পাবেন কীভাবে?

ডার্ক ম্যাটার সম্ভবত প্রকৃতির সবচেয়ে রহস্যময় আর আশ্চর্যজনক বস্তুগুলোর মধ্যে একটি। ডার্ক ম্যাটার আমাদের পরিচিত কোনো পদার্থের সাথে কোনোরকম মিথস্ক্রিয়া করে না। তবে আর কিছুই না হোক ডার্ক ম্যাটারের ভর আছে (এই ভর যেকোনো হিসেবে বিশাল, বিজ্ঞানীরা এখন জানেন আমাদের মহাবিশ্বের ২৩ শতাংশই হলো ডার্ক ম্যাটার)। আইনস্টাইনের আপেক্ষিকতার সাধারণ তত্ত্ব থেকে আমরা দেখেছি, যেকোনো ভর তার আশেপাশের স্থানকে বাঁকিয়ে ফেলে। তাই মহাকাশে কোথাও ডার্ক ম্যাটার থাকলে তা নিজের ভরের জন্য আশেপাশের স্থানকে বাঁকিয়ে ফেলবে।

কোনো দূরবর্তী গ্যালাক্সি বা নক্ষত্র আর আমাদের দৃষ্টির মাঝে যদি ডার্ক ম্যাটার চলে আসে তবে সেই গ্যালাক্সি বা নক্ষত্র থেকে আসা আলো বেঁকে যাবে। আমরা বুঝে ফেলব মাঝে প্রচণ্ড ভারী কিছু একটা আছে। শুধু সেই ভরকে আমরা দেখতে পাচ্ছি না! ভারী বস্তুর আলোকে বাঁকিয়ে দেয়ার ধর্মকে পদার্থবিজ্ঞানীরা বলেন Gravitational Lensing।

গ্র্যাভিটেশনাল ল্যান্সিং শুনতে যতটা খটমটে, বাস্তবে ঠিক ততটাই কাজের জিনিস। গ্র্যাভিটেশনাল ল্যান্সিং এর মাধ্যমে বিজ্ঞানীরা শুধুমাত্র ডার্ক ম্যাটারের অস্তিত্ব বুঝতে পারেন তাই নয়, কোনো জায়গায় ঠিক কতটুকু ডার্ক ম্যাটার আছে, কীভাবে বিন্যস্ত আছে সব বের করতে পারেন। জ্যোতির্বিজ্ঞানীরা দেখেছেন একেকটি গ্যালাক্সির মোট ভরের বেশিরভাগই আসলে ডার্ক ম্যাটারের ভর। গ্যালাক্সিগুলোতে নক্ষত্র, ধূলিকণা এবং গ্যাসের মেঘ ছাড়া যেসব ফাঁকা স্থান আছে সেগুলো আসলে ঠিক ফাঁকা নয়, সেখানে আছে ডার্ক ম্যাটার। বিজ্ঞানীরা রীতিমতো ডার্ক ম্যাটারের ম্যাপও তৈরি করে ফেলেছেন।

4চিত্রঃ ডার্ক ম্যাটারের ভরের জন্য গালাক্সি থেকে আসা আলো বেঁকে যাচ্ছে।

ডার্ক ম্যাটার খুঁজে পাওয়ার পর পরই সবচেয়ে যুক্তিসঙ্গত প্রশ্ন, এটি তৈরি হয়েছে কী দিয়ে? আমাদের চেনা পরিচিত অণু-পরমাণু নাকি অজানা কোনো কণা দিয়ে?

সবচেয়ে সহজ ব্যাখ্যা হতে পারে, ডার্ক ম্যাটার আসলে আমাদের চেনা জানা অণু-পরমাণু দিয়েই তৈরি। শুধু তারা আলো বিকিরণ করে না বলে আমরা দেখতে পাই না। অণু-পরমাণু দিয়ে তৈরি কিন্তু আলো বিকিরণ করে না এমন অনেক পদার্থের কথাই আমরা জানি। সবার প্রথমে আসে ব্ল্যাকহোল। ব্ল্যাকহোল আলো বিকিরণ করে না, প্রচণ্ড মহাকর্ষ বলে সবকিছু নিজের দিকে টানতে থাকে। গ্র্যাভিটেশনাল ল্যান্সিং ব্যবহার করে তাদের খুঁজে বের করতে হয়।

তারপরেই আসে M.A.C.H.O. বা Massive Compact Halo Object। এরা আসলে ছোট ছোট ভারী নক্ষত্র যারা খুব অল্প আলো বিকিরণ করে। এদেরকেও গ্র্যাভিটেশনাল ল্যান্সিং দিয়ে খুঁজে বের করতে হয়। তাছাড়া আছে Brown dwarf. এরা যথেষ্ট ভারী কিন্তু খুব বেশি আলো বিকিরণ করে না। কিন্তু গ্যালাক্সি আর ক্লাস্টারগুলোতে ডার্ক ম্যাটারের পরিমাণ এতো বেশি যে এসব কিছুও যথেষ্ট না। এক একটি গ্যালাক্সিতে ডার্ক ম্যাটারের পরিমাণ দৃশ্যমান ভরের প্রায় দশ গুণ। শুরুর দিকে নিউট্রিনো বা এক্সিওন এর কথাও চিন্তা করা হয়েছিল। কিন্তু এরা খুবই হালকা ভরের কণিকা। এরপর আর একটি সম্ভাবনাই বাকি থাকে। হয়তো ডার্ক ম্যাটার নতুন ধরনের কোনো কণিকা দ্বারা তৈরি যাদের আমরা এখনো খুঁজে পাইনি।

আমাদের চেনা পরিচিত অণু-পরমাণু দিয়ে তৈরি না হলেও ডার্ক ম্যাটারের বৈশিষ্ট্য কীরকম হতে পারে তা বিজ্ঞানীরা বের করেছেন। এরা আলোর মতো দ্রুত গতির নয়। এরা আমাদের পরিচিত সাধারণ সকল পদার্থকে মহাকর্ষ বলে আকর্ষণ করে এবং মহাকর্ষ ছাড়া অন্য কোনোভাবে পদার্থের সাথে মিথস্ক্রিয়া করে না। আমাদের শরীরের মধ্য দিয়ে প্রতি মুহূর্তে অসংখ্য ডার্ক ম্যাটারের কণিকা এপাশ থেকে ওপাশে চলে যাচ্ছে, আমরা টের পাচ্ছি না। কারণ তারা কোনোভাবেই অণু-পরমাণুকে প্রভাবিত করে না। বিজ্ঞানীরা এই সম্ভাব্য কণিকার নাম দিয়েছেন WIMP (Weakly Interacting Massive Particle)। নাম শুনেই বোঝা যাচ্ছে তারা খুবই দুর্বলভাবে মিথস্ক্রিয়া করে। তাই এখন পর্যন্ত WIMP আবিষ্কার করা সম্ভব হয়নি।

তাই বলে বিজ্ঞানীরা বসে থাকেননি। আমেরিকার Soudan-এ মাটির নিচে একটি পরিত্যাক্ত লোহার খনিতে প্রায় অর্ধমাইল নীচে ল্যাবরেটরি তৈরি করেছেন। এই ল্যাবে শূন্য কেলভিনেরও কম তাপমাত্রায় ১৬টি জার্মেনিয়াম সেন্সর বসানো আছে। সেন্সরগুলোতে জার্মেনিয়ামের ঘনত্ব খুব বেশি, পরমাণুগুলো খুব কাছাকাছি, প্রায় গায়ে গায়ে লেগে থাকে। সেন্সরটিকে যখন শূন্য কেলভিনের নিচে নিয়ে যাওয়া হয় তখন এটি অনেকটা থার্মোমিটারের মতো কাজ করে। কোনো কণা বা রশ্মি এই সেন্সরের মধ্য দিয়ে চলে গেলেই বিজ্ঞানীরা কণা বা রশ্মির বৈশিষ্ট্য হিসেব করে বের করে ফেলতে পারেন।

এই সেন্সর থেকে খুব সূক্ষ্ম মান পাওয়া যায়। কিন্তু পৃথিবীপৃষ্ঠে এটি নিয়ে কাজ করার খুব বড় রকমের একটি সমস্যা আছে। অনেকে নিশ্চয়ই শুনে থাকবেন সূর্য থেকে প্রতিনিয়ত নিউট্রিনো এসে পৃথিবীকে আঘাত করছে। সেই সাথে আছে মিউওন, বিভিন্ন মহাজাগতিক রশ্মি, পৃথিবীপৃষ্ঠে মানবসৃষ্ট বিভিন্ন রশ্মি। সেন্সরগুলো এতটাই সংবেদনশীল যে যেকোনো ধরনের কণার আঘাতেই বিক্ষেপ দেখাবে। এতসব সমস্যাকে পাশ কাটাতে বিজ্ঞানীরা মাটির নিচে ল্যাবরেটরি তৈরি করেছেন। মাটির বিভিন্ন স্তর ভেদ করে সব ধরনের কণা এবং রশ্মি সেন্সর পর্যন্ত পৌঁছাতে পারে না। বিজ্ঞানীরা আশা করছেন পরম শূন্যের কাছাকাছি তাপমাত্রায় রাখা জার্মেনিয়াম সেন্সরে কোনো একদিন একটি WIMP কণিকা আঘাত করবে। যদিও WIMP কণিকা অণু-পরমাণুর সাথে এতই দুর্বলভাবে মিথস্ক্রিয়া করার কথা যে, জার্মেনিয়াম সেন্সর দিয়ে WIMP কণিকা ধরা অনেকটা খড়ের গাদায় সূঁচ খোঁজার মতোই ব্যাপার। বিজ্ঞানীরা এখনো WIMP কণিকা ধরতে পারেননি, এখনো পরীক্ষা নিরীক্ষা চালানো হচ্ছে।

5চিত্রঃ ভূমির গভীরে এই স্থানে অবস্থিত গবেষণাগার। পূর্বে এটি স্বর্ণ উত্তোলন খনি ছিল।

শুনতে অবাক লাগবে, মহাবিশ্বের প্রায় ২৩ শতাংশ ডার্ক ম্যাটার হলেও টেলিস্কোপ দিয়ে দৃশ্যমান আলো ব্যবহার করে আমরা যতটুকু বস্তু দেখতে পাই সেটি মহাবিশ্বের ৪ শতাংশ মাত্র। মহাবিশ্বে গ্যালাক্সিগুলো সুষমভাবে না থেকে ছাড়াছাড়াভাবে ছড়িয়ে থাকার কারণও ডার্ক ম্যাটার। কঙ্কাল যেমন দেহের আকারের পেছনে কাজ করে ডার্ক ম্যাটারের ক্ষেত্রেও সেই একই ব্যাপার। এখানে ২৩ + ৪ = ২৭ শতাংশের কথা বলা হয়েছে মাত্র। সেটি নিশ্চয়ই অনেকের চোখ এড়িয়ে গেছে। মহাবিশ্বের বাকি ৭৩ শতাংশ খুঁজতে গিয়ে দেখা গেল সেটা অজানা এক ধরনের Energy। বিজ্ঞানীরা বলেন ‘Dark Energy’।

একসময় ভাবা হতো আমাদের মহাবিশ্ব স্থির। সর্বপ্রথম ১৯২৯ সালে এডউইন হাবল দেখলেন মহাবিশ্ব মোটেও স্থির নয়। দূরবর্তী গ্যালাক্সিগুলো থেকে আলোর শিফট দেখে বলে দেয়া যায় তারা আমাদের দিকে এগিয়ে আসছে নাকি দূরে সরে যাচ্ছে। রেড শিফট অর্থাৎ আলো লালের দিকে সরে গেলে বুঝতে হবে দূরে সরে যাচ্ছে, আর ব্লু শিফট হলে বা নীলের দিকে হলে বুঝতে হবে এগিয়ে আসছে। এডউইন হাবল আকাশের সবদিকের গ্যালাক্সি থেকেই রেড শিফট পেলেন। প্রথম দেখায় মনে হতে পারে পৃথিবী বুঝি মহাবিশ্বের কেন্দ্র আর বাকি সব পৃথিবী থেকে দূরে সরে যাচ্ছে। কিন্তু ভালো করে লক্ষ্য করে দেখা গেলো পৃথিবী থেকে একটি গ্যালাক্সি যত দূরে তার দূরে ছুটে যাওয়ার হারও ততই বেশি। যার একটিই অর্থ হতে পারে- পৃথিবী মোটেই মহাবিশ্বের কেন্দ্র নয়, পৃথিবীসহ মহাবিশ্বের সবকিছু একটি অন্যটি থেকে দূরে সরে যাচ্ছে। সোজা বাংলায়, মহাবিশ্ব সম্প্রসারিত হচ্ছে।

মহাবিশ্বের সম্প্রসারণশীলতা আবিষ্কৃত হবার পর সবার আগে যেটা মাথায় আসে, একটা সময় মহাবিশ্বের সবকিছু নিশ্চয়ই এক জায়গায় একত্রিত ছিল। তারপর একদিন হঠাৎ কোনো বিস্ফোরণ বা অন্য কোনো কারণে সব আলাদা হয়ে বাইরের দিকে ছুটে যেতে শুরু করলো। বিজ্ঞানীরা এ বিস্ফোরণকে বলেন বিগ ব্যাং। বিগ ব্যাং-এর আগে মহাবিশ্বের সবকিছু একবিন্দুতে একত্রিত অবস্থায় ছিল। বিজ্ঞানীদের ধারণা ছিল বিগ ব্যাং-এর প্রবল ধাক্কার ফলাফল হিসেবে মহাবিশ্ব এখনো সম্প্রসারিত হচ্ছে। বিস্ফোরণের পরপরই মহাকর্ষ বল সম্প্রসারণের বেগটাকে কমানোর চেষ্টা করে যাচ্ছে। তাই একসময় সম্প্রসারণের বেগ কমতে কমতে মহাবিশ্ব স্থির হয়ে যাবে। তারপর মহাকর্ষের প্রভাবে আবার সংকোচন শুরু হবে। এর মাঝে বলে নেই, মহাবিশ্বের সম্প্রসারণ শুধুমাত্র স্থানের মধ্যে নক্ষত্র, গ্যালাক্সি, ধূলিকণা ইত্যাদির পরস্পর থেকে দূরে সরে যাওয়ার মতো ঘটনা না। সেরকম কিছু হলে পৃথিবী ধীরে ধীরে সূর্য থেকে দূরে সরে যেতো। স্থান শাশ্বত কিছু নয়। বিগ ব্যাং এর ফলে পদার্থের সাথে সাথে স্থানও সৃষ্টি হয়েছিল এবং মহাবিশ্বের সম্প্রসারণ বলতে নক্ষত্র, গ্যালাক্সি, ধূলিকণা ইত্যাদির মধ্যবর্তী স্থানের সম্প্রসারণ বোঝানো হয়েছে।

কেউ যদি প্রশ্ন করে আমাদের মহাবিশ্বের পরিণতি কী? একটি সম্ভাব্য উত্তর হবার কথা ছিল- এখন মহাবিশ্ব সম্প্রসারিত হচ্ছে। মহাকর্ষের কারণে ধীরে ধীরে এ সম্প্রসারণের বেগ কমে আসার কথা এবং শেষ পর্যন্ত মহাবিশ্ব সংকুচিত হতে হতে আবার একটি বিন্দুতে চলে আসার কথা। বিজ্ঞানীরা মোটামুটি নিশ্চিত ছিলেন মহাবিশ্বের সম্প্রসারণের হার ধীরে ধীরে কমে আসছে। তাই বছর কয়েক আগে কয়েকজন পদার্থবিজ্ঞানী ভাবলেন সম্প্রসারণ কমে আসার হারটা বের করা যাক। সেটা বের করতে হলে প্রথমেই জানা দরকার বিগ ব্যাং-এর পর থেকে বিভিন্ন সময়ে মহাবিশ্বের সম্প্রসারণের গতিবেগ কেমন ছিল।

বর্তমান সময়ে বসে কীভাবে অতীতের সম্প্রসারণ বেগ বের করা যায়? তার জন্য খুব সহজ উপায় আছে। ধরা যাক, এই মুহূর্তে পৃথিবী থেকে দশ হাজার আলোকবর্ষ দূরের একটি গ্যালাক্সি থেকে আলো আসছে। তার মানে হচ্ছে, গ্যলাক্সিটা থেকে দশ হাজার বছর আগে যে আলোটুকু পৃথিবীর দিকে রওনা দিয়েছিল সেই আলোটুকু পৃথিবী আর গ্যালাক্সিটার মধ্যবর্তী দূরত্ব অতিক্রম করে এই মাত্র আমাদের কাছে এসে পৌঁছলো। আমরা যদি এই আলোর রেড শিফট মাপি তাহলে পৃথিবী থেকে গ্যালাক্সির দূরে সরে যাওয়ার যে বেগ পাবো সেটা হচ্ছে দশ হাজার বছর আগের সম্প্রসারণের গতিবেগ। বর্তমানে সেই গতিবেগ হয়তো অনেক পরিবর্তন হয়ে গেছে। কিন্তু এখনই সেটি জানার কোনো উপায় নেই। সেটি জানতে হলে আরো দশ হাজার বছর ধৈর্য ধরে অপেক্ষা করতে হবে।

ঠিক একই পদ্ধতিতে আরও কাছের বা দূরের গ্যালাক্সি বা আলোকিত কোনো বস্তুর রেড শিফট মেপে বিভিন্ন সময়ে সম্প্রসারণের বেগ বের করা সম্ভব (খুব সূক্ষ্মভাবে রেড শিফট মাপার জন্য দরকার খুব উজ্জ্বল লক্ষ্যবস্তু। বিজ্ঞানীরা তাই মহাকাশে সবচেয়ে উজ্জ্বল টাইপ-১ সুপারনোভা ব্যবহার করেন)। বিজ্ঞানীদের দুটি দল আলাদা আলাদাভাবে প্রায় ৬০ টি সুপারনোভার রেড শিফট মেপে একেবারে হতভম্ব হয়ে গেলেন। মহাবিশ্বের সম্প্রসারণের হার মোটেই কমে যাচ্ছে না, বরং তা ত্বরিত হারে বাড়ছে।

বারবার ফলাফল পুনঃনিরীক্ষণ করেও বিজ্ঞানীরা একই ফল পেলেন। যার অর্থ হচ্ছে মহাবিশ্বে এক ধরনের এনার্জি বিদ্যমান যা বিকর্ষণধর্মী বল সৃষ্টি করে স্থানের সম্প্রসারণ করে যাচ্ছে। একেই বিজ্ঞানীরা বলেন Dark Energy। এই ডার্ক এনার্জিই মহাবিশ্বের বাকি ৭৩ শতাংশ তৈরি করেছে। বিজ্ঞানীদের ধারণা ডার্ক ম্যাটার আর ডার্ক এনার্জি বিগ ব্যাং-এর সাথে সাথেই সৃষ্টি হয়েছিল। সম্প্রসারণের হার বের করতে গিয়ে দেখা গেল, বিগ ব্যাং-এর পরে প্রথম ৯ বিলিয়ন বছর মহাবিশ্বের সম্প্রসারণের হার ধীরে ধীরে কমে আসছিল। ঠিক তার পরপরই হঠাৎ করে সম্প্রসারণের হার বাড়তে শুরু করেছিল এবং গত পাঁচ বিলিয়ন বছর ধরে এ হার বেড়েই চলেছে।

যার অর্থ হচ্ছে- প্রথমদিকে মহাবিশ্বে ডার্ক ম্যাটার আর সাধারণ পদার্থের মহাকর্ষের আধিপত্য ছিল। তাই সম্প্রসারণের হার কমে যাচ্ছিল। যতই সময় গেল আর মহাবিশ্ব বড় হতে লাগল, ধীরে ধীরে ডার্ক এনার্জির আধিপত্য শুরু হলো। সম্প্রসারণের বেগ আবার বেড়ে যেতে শুরু করল। তাই বিজ্ঞানীদের ধারণা উচ্চ তাপমাত্রা আর অধিক ঘনত্বে (মহাবিশ্বের শুরুর অবস্থা) ডার্ক এনার্জির ক্রিয়া ধর্তব্যের মাঝে আসবে না। তাপমাত্রা যতই কমে আসবে, ঘনত্ব যতই কমে আসবে, ডার্ক এনার্জি ততই মহাকর্ষ বলের ওপর আধিপত্য বিস্তার করতে থাকবে। পাঁচ বিলিয়ন বছর আগে এ কারণেই আবার সম্প্রসারণের বেগ বাড়তে শুরু করেছিল।

ডার্ক এনার্জিকে বলা যায় স্থানের এক রহস্যময় ধর্ম যা সম্পর্কে এখনো খুব বেশি কিছু জানা সম্ভব হয়নি। বিজ্ঞানীরা এখনো জানে না ডার্ক এনার্জি এভাবেই আধিপত্য বিস্তার করতে থাকবে নাকি কোনো একসময় দিক পরিবর্তন করে ফেলবে। তাই শেষ পর্যন্ত মহাবিশ্ব সংকুচিত হবে, নাকি এভাবেই প্রসারিত হতে থাকবে তা এ মুহূর্তেই বলা সম্ভব নয়। তবে বেশিরভাগ বিজ্ঞানীই মনে করেন মহাবিশ্ব এভাবেই প্রসারিত হতে থাকবে।

সেই উনবিংশ শতাব্দীর শুরু থেকে পৃথিবীব্যাপী পদার্থবিজ্ঞানীরা একটি Unified তত্ত্ব বের করার চেষ্টা করে আসছেন। একগুচ্ছ সমীকরণ, যার মাধ্যমে পুরো মহাবিশ্বের সবকিছু ব্যাখ্যা করা যাবে। আইনস্টাইন তার জীবনের শেষ ত্রিশ বছর চেষ্টা করেও কোনো কূলকিনারা করতে পারেননি। তার পরে এখনো বিজ্ঞানীরা চেষ্টা করেই যাচ্ছেন। যতই তারা সামনে এগিয়ে যাচ্ছেন, মহাবিশ্ব যেন ততই নতুন নতুন রহস্য নিয়ে হাজির হচ্ছে। বাস্তব মহাবিশ্ব যে যেকোন রহস্য উপন্যাসের চেয়ে কোনো অংশেই কম না সেটা আমরা মাঝে মাঝেই ভুলে বসে থাকি।

তথ্যসূত্র

১) http://pics-about-space.com/planet-mars-black-and-white?p=2#img7875126582525238326

২) en.wikipedia.org/wiki/Andromeda_Galaxy

৩) en.wikipedia.org/wiki/Solar_mass

৪) www.sudan.umn.edu/cdms/

৫) cdms.berkeley.edu/experiment.html

সেই বিজ্ঞানী যিনি মহাবিশ্বের সম্প্রসারণ এবং প্লুটো প্রায় আবিষ্কার করে ফেলেছিলেন

পৃথিবীতে অনেক বিজ্ঞানীই রয়েছেন। কিন্তু অভাগা বিজ্ঞানী রয়েছেন কয়জন? সেই অভাগা বিজ্ঞানীদের একটা তালিকা করতে গেলে ভেস্টো মেলভিন সিলফারের নাম মনে হয় প্রথম দিকেই আসবে।

Vesto Melvin Slipher (1875-1969), one of astronomy's great unsung heroes. (Credit: Lowell Observatory)
ভেস্টো মালভিন সিলফার

আগের লেখাতে আমরা দেখেছি তিনিই গ্যালাক্সিগুলো যে দূরে সরে যাচ্ছে তা প্রথম পর্যবেক্ষণ করেন। তিনিই গ্যালাক্সির রেড শিফটের আবিষ্কর্তা। কিন্তু তিনি তার তথ্যগুলোকে নির্দিষ্ট কোন ছক বা, সূত্রে ফেলতে সক্ষম হয়েছিলেন না, যা করতে পেরেছিলেন বিজ্ঞানী হাবল। তাই ইতিহাস বিজ্ঞানী হাবলকে এক মহানায়ক হিসেবে মনে রাখলেও দুর্ভাগ্যজনকভাবে ভেস্টো মেলভিন সিলফারের কথা অনেক জ্যোতিপদার্থবিদরাও হয়ত জানেন না। বিষয়টাকে তার দুর্ভাগ্যই বলতে হবে।

আরেকবার মহানায়ক হওয়ার দ্বারপ্রান্তে পৌছে গিয়েছিলেন সিলফার। এই কাজটি করতে পারলেও তিনি ইতিহাসে স্মরণীয় হয়ে যেতে পারতেন। আজ আমরা শুনব সেই কাহিনী।

বর্তমানে সবাই ক্লাইড ডব্লিউ টমবাউকে প্লুটোর আবিষ্কর্তা হিসেবে জানে। কথাটি সত্য। কিন্তু এর পেছনেও আছে লম্বা ইতিহাস।

সিলফার আসলে লয়েল অবজারভেটরিতে লয়েলের অধীনে কাজ করতেন। লয়েলের অনেক ইচ্ছা ছিল নেপচুনেরও পরে কোন গ্রহ খুঁজে বের করা। লয়েল ১৯১৬ সালে মারা যান। লয়েলের সম্মানে সিলফার ১৯২৯ সালে প্ল্যানেট এক্সের খুবই শৃঙ্খলাবদ্ধ খোঁজ শুরু করলেন। প্লুটোর খোজের জন্য আকাশের প্রতি ইঞ্চি ইঞ্চি জায়গার ছবির দরকার ছিল। এ ছবিগুলো প্রতি সপ্তাহে সংগ্রহ করা হত এবং একটা অস্পষ্ট কিন্তু গতিশীল বস্তু খোজা হচ্ছিল। তিন লাখ তারার মাঝে এমন ছবি তোলা খুবই পরিশ্রমের এবং ধৈর্য্যের কাজ ছিল। সুতরাং সিলফার  ক্লাইড ডব্লিউ টমবাউকে এ কাজের জন্য নিযুক্ত করলেন। টম্বাউ এর বয়স ছিল মাত্র ২৩ বছর। সে খুবই নতুন জ্যোতির্বিদ ছিল। কিন্তু সে ছিল সঠিক ফলাফলের প্রতি খুঁতখুঁতে। তার ধৈর্য্যও ছিল অসীম। এ ব্যাপারটি লক্ষ্য করেই সিলফার তাকে কাজটি দেন।

Image result
ক্লাইড ডব্লিউ টমবাউ

লয়েল বের করেছিলেন যে প্ল্যানেট এক্সকে যদি খুঁজে পাওয়া যায় অবে তাকে জেমিনি নক্ষত্রপুঞ্জের মাঝে খুঁজে পাওয়া যাবে। লয়েল যেসব যুক্তি ব্যবহার করে এটা বের করেছিলেন তা ছিল ভুলে ভরা। কিন্তু তিনি চরমমাত্রার ভাগ্যবান হিসেবে আবির্ভূত হলেন। ভুলভাল হিসাব নিকাশ আর যুক্তির পরও তার ধারণা সঠিক ছিল। সিলফার লয়েলের বলে দেয়া জায়গাটাতেই প্ল্যানেট এক্সকে খোঁজার কাজ শুরু করেন। টমবাউ ছবিগুলো নিত এবং সেগুলো পরীক্ষা করে দেখত। সিলফারের পদ্ধতিটি ছিল আকাশের একই জায়গার ভিন্ন সময়ের এক জোড়া ছবি বার বার দেখে কোন পার্থক্য পাওয়া যায় কিনা তা বের করা, যাকে বিজ্ঞানের ভাষায় ব্লিঙ্কিং পদ্ধতি বলে। যদি কোন গ্রহ তারা গুলোর মাঝ দিয়ে ঘুরে বেড়ায় তাহলে তাদের এক স্থান থেকে অন্য স্থানে যাওয়ার অস্তিত্ব ধরা পড়ার কথা এ পদ্ধতিতে।

কিন্তু সিলফার তখন লয়েল অবজারভেটরির প্রধান ছিলেন। তার এর বাইরেও অনেক অনেক কাজ ছিল। তিনি বেশ কয়েক সপ্তাহ জেমিনি নক্ষত্রপুঞ্জের আশে পাশে প্ল্যানেট এক্সকে খুঁজে বেরালেন এবং অবশেষে অবজারভেটরির প্রধান হিসেবে বিভিন্ন দায়িত্বের চাপে এক পর্যায়ে এসে প্ল্যানেট এক্সকে খোঁজা বাদ দিয়ে দিলেন। তিনি সম্পূর্ণ প্রজেক্টটি টমবাউ এর হাতে তুলে দিলেন। দায়িত্ব নিয়ে টমবাউ বুঝলেন সিলফার একটু দ্রুতই একের পর এক ছবি নিয়েছিলেন। এত দূরের অস্পষ্ট এক প্ল্যানেট এক্সকে খুঁজে বের করতে হলে আরো দীর্ঘ সময়ের বিরতিতে ছবি তুলতে হবে। টমবাউ আবার প্রথম থেকে ছবি নেয়া শুরু করলেন।

Discovery photos of Pluto, taken by Clyde Tombaugh under Vesto Slipher's direction. (Credit: Lowell Observatory)

১৮ ফেব্রুয়ারি, ১৯৩০। এল সেই মাহেন্দ্রক্ষণ। টমবাউ প্লুটো আবিষ্কার করলেন। খুঁজে পেলেন সঊরজগতের নবম গ্রহ। সিলফার যেখানে গ্রহটি খুজছিলেন তার ঠিক কাছেই। অনেকেই বলে থাকে সিলফার আগেই গ্রহটি দেখেছিলেনও, কিন্তু আসলে বুঝতে পারেননি।

Image result
তৎকালীন পত্রিকায় প্লুটো আবিষ্কারের খবর

টমবাউ প্লুটোর আবিষ্কর্তা হয়ে গেলেন। সিলফার কিন্তু ব্যররথ হওয়াতে হতাশা বা, কোনরকম অনুশোচনা প্রকাশ করলেন না। সবচেয়ে গুরুত্বপূর্ণ বিষয় তিনি এ আবিষ্কারের কোনরকম আংশিক কৃতিত্বও দাবী করলেন না। তিনি জোর করে পুরো বিষয়টি কেড়েও নেননি। তিনি সহজেই এটা বলতে পারতেন যে টমবাউ তার নিযুক্ত সহকারি ছিল, যে তার প্রজেক্টে কাজ করছে মাত্র, যা পুরোপুরি সত্য একটি কথা। এমনকি সিলফার তখন বেশ বড় রকমের পদার্থবিদ হলেও টমবাউ ছিলেন মাত্র ২৪ বছরের এক তরুণ। সুতরাং প্লুটো আবিষ্কারের কৃতিত্ব নিজের করে নেয়া খুব একটা কঠিন ছিল না সিলফারের জন্য।

কিন্তু সিলফার ছিলেন বেশ ভদ্র এবং সৎ লোক। অথচ প্লুটো আবিষ্কারে তার অবদান অনস্বীকার্য। কিন্তু তারপরও মহাবিশ্বের সম্প্রসারণ আর প্লুটো উভয় আবিষ্কারের খুব কাছাকাছি থেকেও নিজেই সেটা ঠিকমত বুঝতে না পারায় সিলফার ইতিহাস থেকে প্রায় মুছে যাওয়া এক বিজ্ঞানীর নামই হয়ে আছে।

অজানা অদৃশ্য মহাবিশ্ব

আমাদের সূর্য আকাশগঙ্গা ছায়াপথের ঘূর্ণায়মান বাহুর একপাশে অবস্থান করছে। রাতের আকাশের দিকে খালি চোখে তাকালে আমরা যে এক হাজারের মতো নক্ষত্র দেখতে পাই তার বেশিরভাগই আকাশগঙ্গায় অবস্থিত। খালি চোখে না তাকিয়ে একটি সাধারণ মানের দূরবীন ব্যবহার করলে চোখের সামনে নক্ষত্রের সংখ্যা আরো কয়েক গুণ বেড়ে যাবে। যাকে এখন সাধারণ মানের দূরবীন বলা হচ্ছে একটা সময় কিন্তু বিজ্ঞানীদের সবচেয়ে শক্তিশালী টেলিস্কোপও এর সাথে পাল্লা দিতে পারতো না। তাই খুব স্বাভাবিকভাবেই মানুষের ধারণা ছিল আকাশগঙ্গা ছায়াপথই আমাদের সম্পূর্ণ মহাবিশ্ব। ১৯২০ সালের আগ পর্যন্ত প্রযুক্তি ব্যবহার করে আকাশগঙ্গার চেয়ে বেশি কিছু দেখা সম্ভব ছিল না। প্রযুক্তির উন্নতির সাথে সাথে বিজ্ঞানীদের টেলিস্কোপের ক্ষমতাও বাড়তে লাগল। নতুন নতুন শক্তিশালী টেলিস্কোপ আকাশের দিকে তাক করে বিজ্ঞানীরা একেবারে অবাক হয়ে গেলেন।

১৯২০ সালের দিকে বিজ্ঞানী এডউইন হাবল আবিষ্কার করলেন এই মহাবিশ্ব আকাশগঙ্গা ছায়াপথ চেয়েও অনেক বেশি বড়। আগে যেসব ঝাপসা আলোর বিন্দুকে অনেক দূরবর্তী নক্ষত্র ভাবা হতো, তাদের অনেকগুলোই আসলে আকাশগঙ্গার মতোই আলাদা আলাদা গ্যালাক্সি! জ্যোতির্বিজ্ঞানীরা প্রতিদিন নতুন নতুন গ্যালাক্সি আবিষ্কার করতে শুরু করলেন। সেই সময় Fritz Zwicky ছিলেন ক্যালটেকের প্রফেসর। তিনি Coma cluster-এর গ্যালাক্সিগুলো পর্যবেক্ষণ করছিলেন। আশেপাশের অন্যান্য গ্যালাক্সিগুলোর সাপেক্ষে কোনো একটি গ্যালাক্সির গতিবেগ পর্যবেক্ষণ করে তাদের মধ্যে কতটুকু ভর আছে সেটি বের করা সম্ভব।

প্রফেসর Fritz Zwicky, coma cluster-এর গ্যালাক্সিগুলোর গতিবেগ মেপে নিয়ে তার মধ্যে ঠিক কতটুকু ভর থাকতে পারে তা হিসেব করে বের করে নিলেন। কিন্তু এই ভরকে দৃশ্যমান ভরের সাথে তুলনা করতে গিয়ে কিছুতেই হিসেব মেলাতে পারলেন না। দৃশ্যমান ভর বলতে বোঝানো হয় গ্যালাক্সির যেসব নক্ষত্র আলো বিকিরণ করে কিংবা যেসব ধূলিকণা, গ্যাসের মেঘ নক্ষত্রের আলোকে আটকে দেয়। মোটকথা গ্যলাক্সির দিকে তাকিয়ে আমরা যেটুকু দেখতে পাই তার মোট ভর। Fritz Zwicky-এর হিসেব অনুযায়ী ক্লাস্টারের মধ্যে গ্যালাক্সিগুলোর যে গতিবেগ ততটুকু গতিবেগ অর্জন করতে হলে গ্যালাক্সিগুলোতে তাদের দৃশ্যমান ভরের প্রায় ১৬০ গুণ বেশি ভর থাকা উচিৎ ছিল।

তার মানে অদৃশ্য কোনো ভর গ্যালাক্সিগুলোর এই গতিবেগের জন্য দায়ী। সেই অদৃশ্য ভরকে কোনোভাবেই খুঁজে পাওয়া গেল না। তিনি অনেকভাবে হিসেব করে দেখলেন, একটি বিশাল পরিমাণ অদৃশ্য ভর না থাকলে Coma cluster-এর ভারসাম্য বজায় থাকত না। তিনি এই অদৃশ্য ভরের নাম দিলেন ‘হারানো ভর’ বা Missing matter।

ধরা-ছোঁয়া যায় এমন প্রায় সবকিছুর ভরই দাঁড়িপাল্লার নীতি ব্যবহার করে মেপে বের করে ফেলা যায়। কিন্তু পৃথিবী থেকে অকল্পনীয় দূরত্বে অবস্থিত এসব নক্ষত্র কিংবা গ্যালাক্সির ভর বিজ্ঞানীরা ঠিক কীভাবে মাপেন? পৃথিবীর ভর প্রায়  কেজি, সূর্যের ভর প্রায়  কেজি, বৃহস্পতির ভর প্রায়  কেজি, মিল্কিওয়ের ভর সূর্যের ভরের প্রায়  গুণ, এন্ড্রোমিডা গ্যালাক্সির ভর সূর্যের ভরের প্রায়  গুণ।

কিন্তু এন্ড্রোমিডা গ্যালাক্সির কাছে গিয়ে গ্যালাক্সিটাকে একটা দাঁড়িপাল্লায় নিয়ে ভর মেপে নেয়ার কোনো উপায় নেই। তাই বিজ্ঞানীরা ধরা ছোঁয়ার বাইরের অনেক দূরবর্তী পদার্থের ভর মাপেন একটু বাঁকা পথে। পথটা বাঁকা হলেও পদ্ধতিটি খুব সহজ। আমরা জানি একটি বস্তুর ভর যত বেশি হবে তার মহাকর্ষীয় আকর্ষণ হবে তত বেশি। আর বস্তুটি থেকে দূরত্ব যত বাড়তে থাকবে তার মহাকর্ষীয় আকর্ষণও ততই কমে যাবে (বুধ সূর্যের সবচেয়ে কাছের গ্রহ এবং ঠিক এ কারণেই সূর্যের চারিদিকে নিজের কক্ষপথে ভারসাম্য বজায় রাখতে বুধের গতিবেগ সবচেয়ে বেশি। নেপচুনের গতিবেগ সেই তুলনায় অনেক অনেক কম)। তাই আশেপাশের গ্রহ, নক্ষত্র, গ্যাসের মেঘ ইত্যাদির গতিবেগ এবং দূরত্ব থেকে খুব সহজেই ভরটুক বের করে ফেলা যায়।

2চিত্রঃ বুধ সূর্যের সবচেয়ে কাছের গ্রহ। তাই বুধের গতিবেগ সবচেয়ে বেশি।

একটি ভরকে ঘিরে ঘুরপাক খাওয়া পদার্থের আরেকটি উদাহরণ হলো সর্পিলাকার গ্যালাক্সি। যেসব গ্যলাক্সির একটি অত্যন্ত ভারী কেন্দ্র থাকে এবং গ্যালাক্সির সকল নক্ষত্র সেই ভারী কেন্দ্রকে ঘিরে ঘুরতে থাকে তদেরকে বলা হয় সর্পিলাকার গ্যালাক্সি। তাই ঠিক একইরকম হওয়ার কথা সর্পিলাকার গ্যালাক্সির ক্ষেত্রেও। অর্থাৎ বাইরের দিকের নক্ষত্রগুলোর ঘূর্ণন বেগ কেন্দ্রের দিকে নক্ষত্রগুলোর চেয়ে অনেক কম হবে। বিজ্ঞানী ভেরা রুবিন কিন্তু সেরকমটি দেখলেন না।

3চিত্রঃ সর্পিলাকার গ্যালাক্সি।

মিল্কিওয়ের মতো সর্পিল গ্যালাক্সিগুলোর ঘূর্ণন পর্যবেক্ষণ করতে করতে তিনি দেখলেন গ্যালাক্সিগুলোর কেন্দ্র থেকে দূরে সরে গেলে যেমন নক্ষত্র, গ্যাস আর ধুলিকণার মেঘের গতিবেগ কমে যাওয়ার কথা ছিল, তেমনটি হচ্ছে না। বরং গতিবেগ প্রায় সমান সমান।

ভেরা রুবিনের হিসেব অনুযায়ী গ্যালাক্সিগুলোতে দৃশ্যমান যতটুক ভর আছে এবং সেই ভরের জন্য গ্যালাক্সির মধ্যে নক্ষত্র, গ্যাসের মেঘের যতটুক গতিবেগ নিয়ে ঘোরার কথা ছিল তার তুলনায় এ গতিবেগ প্রায় দশগুণ বেশি। তারমানে নিশ্চয়ই গ্যলাক্সির মধ্যে এমন কোনো পদার্থ আছে যা গ্যালাক্সির এই গতির জন্য দায়ী এবং কোনো এক কারণে আমরা তাদের দেখতে পাচ্ছি না। রুবিন হিসেব করে বের করলেন, এমনটা হবে যদি গ্যালাক্সির মধ্যে অদৃশ্য ভরের পরিমাণ দৃশ্যমান ভরের দশগুণ হয়।

অদৃশ্য পদার্থকে এখন বলা হয় ‘Dark matter’। তারপর থেকে বিজ্ঞানীরা শত শত গ্যালাক্সি পর্যবেক্ষণ করেছেন। সব ক্ষেত্রেই সেই একই ব্যাপার। কিন্তু বহুবার বহুভাবে চেষ্টা করেও বিজ্ঞানীরা কোনোভাবেই ডার্ক ম্যাটার খুঁজে পেলেন না। যে বস্তুকে চোখেই দেখা যায় না তাকে খুঁজে পাবেন কীভাবে?

ডার্ক ম্যাটার সম্ভবত প্রকৃতির সবচেয়ে রহস্যময় আর আশ্চর্যজনক বস্তুগুলোর মধ্যে একটি। ডার্ক ম্যাটার আমাদের পরিচিত কোনো পদার্থের সাথে কোনোরকম মিথস্ক্রিয়া করে না। তবে আর কিছুই না হোক ডার্ক ম্যাটারের ভর আছে (এই ভর যেকোনো হিসেবে বিশাল, বিজ্ঞানীরা এখন জানেন আমাদের মহাবিশ্বের ২৩ শতাংশই হলো ডার্ক ম্যাটার)। আইনস্টাইনের আপেক্ষিকতার সাধারণ তত্ত্ব থেকে আমরা দেখেছি, যেকোনো ভর তার আশেপাশের স্থানকে বাঁকিয়ে ফেলে। তাই মহাকাশে কোথাও ডার্ক ম্যাটার থাকলে তা নিজের ভরের জন্য আশেপাশের স্থানকে বাঁকিয়ে ফেলবে।

কোনো দূরবর্তী গ্যালাক্সি বা নক্ষত্র আর আমাদের দৃষ্টির মাঝে যদি ডার্ক ম্যাটার চলে আসে তবে সেই গ্যালাক্সি বা নক্ষত্র থেকে আসা আলো বেঁকে যাবে। আমরা বুঝে ফেলব মাঝে প্রচণ্ড ভারী কিছু একটা আছে। শুধু সেই ভরকে আমরা দেখতে পাচ্ছি না! ভারী বস্তুর আলোকে বাঁকিয়ে দেয়ার ধর্মকে পদার্থবিজ্ঞানীরা বলেন Gravitational Lensing।

গ্র্যাভিটেশনাল ল্যান্সিং শুনতে যতটা খটমটে, বাস্তবে ঠিক ততটাই কাজের জিনিস। গ্র্যাভিটেশনাল ল্যান্সিং এর মাধ্যমে বিজ্ঞানীরা শুধুমাত্র ডার্ক ম্যাটারের অস্তিত্ব বুঝতে পারেন তাই নয়, কোনো জায়গায় ঠিক কতটুকু ডার্ক ম্যাটার আছে, কীভাবে বিন্যস্ত আছে সব বের করতে পারেন। জ্যোতির্বিজ্ঞানীরা দেখেছেন একেকটি গ্যালাক্সির মোট ভরের বেশিরভাগই আসলে ডার্ক ম্যাটারের ভর। গ্যালাক্সিগুলোতে নক্ষত্র, ধূলিকণা এবং গ্যাসের মেঘ ছাড়া যেসব ফাঁকা স্থান আছে সেগুলো আসলে ঠিক ফাঁকা নয়, সেখানে আছে ডার্ক ম্যাটার। বিজ্ঞানীরা রীতিমতো ডার্ক ম্যাটারের ম্যাপও তৈরি করে ফেলেছেন।

4চিত্রঃ ডার্ক ম্যাটারের ভরের জন্য গালাক্সি থেকে আসা আলো বেঁকে যাচ্ছে।

ডার্ক ম্যাটার খুঁজে পাওয়ার পর পরই সবচেয়ে যুক্তিসঙ্গত প্রশ্ন, এটি তৈরি হয়েছে কী দিয়ে? আমাদের চেনা পরিচিত অণু-পরমাণু নাকি অজানা কোনো কণা দিয়ে?

সবচেয়ে সহজ ব্যাখ্যা হতে পারে, ডার্ক ম্যাটার আসলে আমাদের চেনা জানা অণু-পরমাণু দিয়েই তৈরি। শুধু তারা আলো বিকিরণ করে না বলে আমরা দেখতে পাই না। অণু-পরমাণু দিয়ে তৈরি কিন্তু আলো বিকিরণ করে না এমন অনেক পদার্থের কথাই আমরা জানি। সবার প্রথমে আসে ব্ল্যাকহোল। ব্ল্যাকহোল আলো বিকিরণ করে না, প্রচণ্ড মহাকর্ষ বলে সবকিছু নিজের দিকে টানতে থাকে। গ্র্যাভিটেশনাল ল্যান্সিং ব্যবহার করে তাদের খুঁজে বের করতে হয়।

তারপরেই আসে M.A.C.H.O. বা Massive Compact Halo Object। এরা আসলে ছোট ছোট ভারী নক্ষত্র যারা খুব অল্প আলো বিকিরণ করে। এদেরকেও গ্র্যাভিটেশনাল ল্যান্সিং দিয়ে খুঁজে বের করতে হয়। তাছাড়া আছে Brown dwarf. এরা যথেষ্ট ভারী কিন্তু খুব বেশি আলো বিকিরণ করে না। কিন্তু গ্যালাক্সি আর ক্লাস্টারগুলোতে ডার্ক ম্যাটারের পরিমাণ এতো বেশি যে এসব কিছুও যথেষ্ট না। এক একটি গ্যালাক্সিতে ডার্ক ম্যাটারের পরিমাণ দৃশ্যমান ভরের প্রায় দশ গুণ। শুরুর দিকে নিউট্রিনো বা এক্সিওন এর কথাও চিন্তা করা হয়েছিল। কিন্তু এরা খুবই হালকা ভরের কণিকা। এরপর আর একটি সম্ভাবনাই বাকি থাকে। হয়তো ডার্ক ম্যাটার নতুন ধরনের কোনো কণিকা দ্বারা তৈরি যাদের আমরা এখনো খুঁজে পাইনি।

আমাদের চেনা পরিচিত অণু-পরমাণু দিয়ে তৈরি না হলেও ডার্ক ম্যাটারের বৈশিষ্ট্য কীরকম হতে পারে তা বিজ্ঞানীরা বের করেছেন। এরা আলোর মতো দ্রুত গতির নয়। এরা আমাদের পরিচিত সাধারণ সকল পদার্থকে মহাকর্ষ বলে আকর্ষণ করে এবং মহাকর্ষ ছাড়া অন্য কোনোভাবে পদার্থের সাথে মিথস্ক্রিয়া করে না। আমাদের শরীরের মধ্য দিয়ে প্রতি মুহূর্তে অসংখ্য ডার্ক ম্যাটারের কণিকা এপাশ থেকে ওপাশে চলে যাচ্ছে, আমরা টের পাচ্ছি না। কারণ তারা কোনোভাবেই অণু-পরমাণুকে প্রভাবিত করে না। বিজ্ঞানীরা এই সম্ভাব্য কণিকার নাম দিয়েছেন WIMP (Weakly Interacting Massive Particle)। নাম শুনেই বোঝা যাচ্ছে তারা খুবই দুর্বলভাবে মিথস্ক্রিয়া করে। তাই এখন পর্যন্ত WIMP আবিষ্কার করা সম্ভব হয়নি।

তাই বলে বিজ্ঞানীরা বসে থাকেননি। আমেরিকার Soudan-এ মাটির নিচে একটি পরিত্যাক্ত লোহার খনিতে প্রায় অর্ধমাইল নীচে ল্যাবরেটরি তৈরি করেছেন। এই ল্যাবে শূন্য কেলভিনেরও কম তাপমাত্রায় ১৬টি জার্মেনিয়াম সেন্সর বসানো আছে। সেন্সরগুলোতে জার্মেনিয়ামের ঘনত্ব খুব বেশি, পরমাণুগুলো খুব কাছাকাছি, প্রায় গায়ে গায়ে লেগে থাকে। সেন্সরটিকে যখন শূন্য কেলভিনের নিচে নিয়ে যাওয়া হয় তখন এটি অনেকটা থার্মোমিটারের মতো কাজ করে। কোনো কণা বা রশ্মি এই সেন্সরের মধ্য দিয়ে চলে গেলেই বিজ্ঞানীরা কণা বা রশ্মির বৈশিষ্ট্য হিসেব করে বের করে ফেলতে পারেন।

এই সেন্সর থেকে খুব সূক্ষ্ম মান পাওয়া যায়। কিন্তু পৃথিবীপৃষ্ঠে এটি নিয়ে কাজ করার খুব বড় রকমের একটি সমস্যা আছে। অনেকে নিশ্চয়ই শুনে থাকবেন সূর্য থেকে প্রতিনিয়ত নিউট্রিনো এসে পৃথিবীকে আঘাত করছে। সেই সাথে আছে মিউওন, বিভিন্ন মহাজাগতিক রশ্মি, পৃথিবীপৃষ্ঠে মানবসৃষ্ট বিভিন্ন রশ্মি। সেন্সরগুলো এতটাই সংবেদনশীল যে যেকোনো ধরনের কণার আঘাতেই বিক্ষেপ দেখাবে। এতসব সমস্যাকে পাশ কাটাতে বিজ্ঞানীরা মাটির নিচে ল্যাবরেটরি তৈরি করেছেন। মাটির বিভিন্ন স্তর ভেদ করে সব ধরনের কণা এবং রশ্মি সেন্সর পর্যন্ত পৌঁছাতে পারে না। বিজ্ঞানীরা আশা করছেন পরম শূন্যের কাছাকাছি তাপমাত্রায় রাখা জার্মেনিয়াম সেন্সরে কোনো একদিন একটি WIMP কণিকা আঘাত করবে। যদিও WIMP কণিকা অণু-পরমাণুর সাথে এতই দুর্বলভাবে মিথস্ক্রিয়া করার কথা যে, জার্মেনিয়াম সেন্সর দিয়ে WIMP কণিকা ধরা অনেকটা খড়ের গাদায় সূঁচ খোঁজার মতোই ব্যাপার। বিজ্ঞানীরা এখনো WIMP কণিকা ধরতে পারেননি, এখনো পরীক্ষা নিরীক্ষা চালানো হচ্ছে।

5চিত্রঃ ভূমির গভীরে এই স্থানে অবস্থিত গবেষণাগার। পূর্বে এটি স্বর্ণ উত্তোলন খনি ছিল।

শুনতে অবাক লাগবে, মহাবিশ্বের প্রায় ২৩ শতাংশ ডার্ক ম্যাটার হলেও টেলিস্কোপ দিয়ে দৃশ্যমান আলো ব্যবহার করে আমরা যতটুকু বস্তু দেখতে পাই সেটি মহাবিশ্বের ৪ শতাংশ মাত্র। মহাবিশ্বে গ্যালাক্সিগুলো সুষমভাবে না থেকে ছাড়াছাড়াভাবে ছড়িয়ে থাকার কারণও ডার্ক ম্যাটার। কঙ্কাল যেমন দেহের আকারের পেছনে কাজ করে ডার্ক ম্যাটারের ক্ষেত্রেও সেই একই ব্যাপার। এখানে ২৩ + ৪ = ২৭ শতাংশের কথা বলা হয়েছে মাত্র। সেটি নিশ্চয়ই অনেকের চোখ এড়িয়ে গেছে। মহাবিশ্বের বাকি ৭৩ শতাংশ খুঁজতে গিয়ে দেখা গেল সেটা অজানা এক ধরনের Energy। বিজ্ঞানীরা বলেন ‘Dark Energy’।

একসময় ভাবা হতো আমাদের মহাবিশ্ব স্থির। সর্বপ্রথম ১৯২৯ সালে এডউইন হাবল দেখলেন মহাবিশ্ব মোটেও স্থির নয়। দূরবর্তী গ্যালাক্সিগুলো থেকে আলোর শিফট দেখে বলে দেয়া যায় তারা আমাদের দিকে এগিয়ে আসছে নাকি দূরে সরে যাচ্ছে। রেড শিফট অর্থাৎ আলো লালের দিকে সরে গেলে বুঝতে হবে দূরে সরে যাচ্ছে, আর ব্লু শিফট হলে বা নীলের দিকে হলে বুঝতে হবে এগিয়ে আসছে। এডউইন হাবল আকাশের সবদিকের গ্যালাক্সি থেকেই রেড শিফট পেলেন। প্রথম দেখায় মনে হতে পারে পৃথিবী বুঝি মহাবিশ্বের কেন্দ্র আর বাকি সব পৃথিবী থেকে দূরে সরে যাচ্ছে। কিন্তু ভালো করে লক্ষ্য করে দেখা গেলো পৃথিবী থেকে একটি গ্যালাক্সি যত দূরে তার দূরে ছুটে যাওয়ার হারও ততই বেশি। যার একটিই অর্থ হতে পারে- পৃথিবী মোটেই মহাবিশ্বের কেন্দ্র নয়, পৃথিবীসহ মহাবিশ্বের সবকিছু একটি অন্যটি থেকে দূরে সরে যাচ্ছে। সোজা বাংলায়, মহাবিশ্ব সম্প্রসারিত হচ্ছে।

মহাবিশ্বের সম্প্রসারণশীলতা আবিষ্কৃত হবার পর সবার আগে যেটা মাথায় আসে, একটা সময় মহাবিশ্বের সবকিছু নিশ্চয়ই এক জায়গায় একত্রিত ছিল। তারপর একদিন হঠাৎ কোনো বিস্ফোরণ বা অন্য কোনো কারণে সব আলাদা হয়ে বাইরের দিকে ছুটে যেতে শুরু করলো। বিজ্ঞানীরা এ বিস্ফোরণকে বলেন বিগ ব্যাং। বিগ ব্যাং-এর আগে মহাবিশ্বের সবকিছু একবিন্দুতে একত্রিত অবস্থায় ছিল। বিজ্ঞানীদের ধারণা ছিল বিগ ব্যাং-এর প্রবল ধাক্কার ফলাফল হিসেবে মহাবিশ্ব এখনো সম্প্রসারিত হচ্ছে। বিস্ফোরণের পরপরই মহাকর্ষ বল সম্প্রসারণের বেগটাকে কমানোর চেষ্টা করে যাচ্ছে। তাই একসময় সম্প্রসারণের বেগ কমতে কমতে মহাবিশ্ব স্থির হয়ে যাবে। তারপর মহাকর্ষের প্রভাবে আবার সংকোচন শুরু হবে। এর মাঝে বলে নেই, মহাবিশ্বের সম্প্রসারণ শুধুমাত্র স্থানের মধ্যে নক্ষত্র, গ্যালাক্সি, ধূলিকণা ইত্যাদির পরস্পর থেকে দূরে সরে যাওয়ার মতো ঘটনা না। সেরকম কিছু হলে পৃথিবী ধীরে ধীরে সূর্য থেকে দূরে সরে যেতো। স্থান শাশ্বত কিছু নয়। বিগ ব্যাং এর ফলে পদার্থের সাথে সাথে স্থানও সৃষ্টি হয়েছিল এবং মহাবিশ্বের সম্প্রসারণ বলতে নক্ষত্র, গ্যালাক্সি, ধূলিকণা ইত্যাদির মধ্যবর্তী স্থানের সম্প্রসারণ বোঝানো হয়েছে।

কেউ যদি প্রশ্ন করে আমাদের মহাবিশ্বের পরিণতি কী? একটি সম্ভাব্য উত্তর হবার কথা ছিল- এখন মহাবিশ্ব সম্প্রসারিত হচ্ছে। মহাকর্ষের কারণে ধীরে ধীরে এ সম্প্রসারণের বেগ কমে আসার কথা এবং শেষ পর্যন্ত মহাবিশ্ব সংকুচিত হতে হতে আবার একটি বিন্দুতে চলে আসার কথা। বিজ্ঞানীরা মোটামুটি নিশ্চিত ছিলেন মহাবিশ্বের সম্প্রসারণের হার ধীরে ধীরে কমে আসছে। তাই বছর কয়েক আগে কয়েকজন পদার্থবিজ্ঞানী ভাবলেন সম্প্রসারণ কমে আসার হারটা বের করা যাক। সেটা বের করতে হলে প্রথমেই জানা দরকার বিগ ব্যাং-এর পর থেকে বিভিন্ন সময়ে মহাবিশ্বের সম্প্রসারণের গতিবেগ কেমন ছিল।

বর্তমান সময়ে বসে কীভাবে অতীতের সম্প্রসারণ বেগ বের করা যায়? তার জন্য খুব সহজ উপায় আছে। ধরা যাক, এই মুহূর্তে পৃথিবী থেকে দশ হাজার আলোকবর্ষ দূরের একটি গ্যালাক্সি থেকে আলো আসছে। তার মানে হচ্ছে, গ্যলাক্সিটা থেকে দশ হাজার বছর আগে যে আলোটুকু পৃথিবীর দিকে রওনা দিয়েছিল সেই আলোটুকু পৃথিবী আর গ্যালাক্সিটার মধ্যবর্তী দূরত্ব অতিক্রম করে এই মাত্র আমাদের কাছে এসে পৌঁছলো। আমরা যদি এই আলোর রেড শিফট মাপি তাহলে পৃথিবী থেকে গ্যালাক্সির দূরে সরে যাওয়ার যে বেগ পাবো সেটা হচ্ছে দশ হাজার বছর আগের সম্প্রসারণের গতিবেগ। বর্তমানে সেই গতিবেগ হয়তো অনেক পরিবর্তন হয়ে গেছে। কিন্তু এখনই সেটি জানার কোনো উপায় নেই। সেটি জানতে হলে আরো দশ হাজার বছর ধৈর্য ধরে অপেক্ষা করতে হবে।

ঠিক একই পদ্ধতিতে আরও কাছের বা দূরের গ্যালাক্সি বা আলোকিত কোনো বস্তুর রেড শিফট মেপে বিভিন্ন সময়ে সম্প্রসারণের বেগ বের করা সম্ভব (খুব সূক্ষ্মভাবে রেড শিফট মাপার জন্য দরকার খুব উজ্জ্বল লক্ষ্যবস্তু। বিজ্ঞানীরা তাই মহাকাশে সবচেয়ে উজ্জ্বল টাইপ-১ সুপারনোভা ব্যবহার করেন)। বিজ্ঞানীদের দুটি দল আলাদা আলাদাভাবে প্রায় ৬০ টি সুপারনোভার রেড শিফট মেপে একেবারে হতভম্ব হয়ে গেলেন। মহাবিশ্বের সম্প্রসারণের হার মোটেই কমে যাচ্ছে না, বরং তা ত্বরিত হারে বাড়ছে।

বারবার ফলাফল পুনঃনিরীক্ষণ করেও বিজ্ঞানীরা একই ফল পেলেন। যার অর্থ হচ্ছে মহাবিশ্বে এক ধরনের এনার্জি বিদ্যমান যা বিকর্ষণধর্মী বল সৃষ্টি করে স্থানের সম্প্রসারণ করে যাচ্ছে। একেই বিজ্ঞানীরা বলেন Dark Energy। এই ডার্ক এনার্জিই মহাবিশ্বের বাকি ৭৩ শতাংশ তৈরি করেছে। বিজ্ঞানীদের ধারণা ডার্ক ম্যাটার আর ডার্ক এনার্জি বিগ ব্যাং-এর সাথে সাথেই সৃষ্টি হয়েছিল। সম্প্রসারণের হার বের করতে গিয়ে দেখা গেল, বিগ ব্যাং-এর পরে প্রথম ৯ বিলিয়ন বছর মহাবিশ্বের সম্প্রসারণের হার ধীরে ধীরে কমে আসছিল। ঠিক তার পরপরই হঠাৎ করে সম্প্রসারণের হার বাড়তে শুরু করেছিল এবং গত পাঁচ বিলিয়ন বছর ধরে এ হার বেড়েই চলেছে।

যার অর্থ হচ্ছে- প্রথমদিকে মহাবিশ্বে ডার্ক ম্যাটার আর সাধারণ পদার্থের মহাকর্ষের আধিপত্য ছিল। তাই সম্প্রসারণের হার কমে যাচ্ছিল। যতই সময় গেল আর মহাবিশ্ব বড় হতে লাগল, ধীরে ধীরে ডার্ক এনার্জির আধিপত্য শুরু হলো। সম্প্রসারণের বেগ আবার বেড়ে যেতে শুরু করল। তাই বিজ্ঞানীদের ধারণা উচ্চ তাপমাত্রা আর অধিক ঘনত্বে (মহাবিশ্বের শুরুর অবস্থা) ডার্ক এনার্জির ক্রিয়া ধর্তব্যের মাঝে আসবে না। তাপমাত্রা যতই কমে আসবে, ঘনত্ব যতই কমে আসবে, ডার্ক এনার্জি ততই মহাকর্ষ বলের ওপর আধিপত্য বিস্তার করতে থাকবে। পাঁচ বিলিয়ন বছর আগে এ কারণেই আবার সম্প্রসারণের বেগ বাড়তে শুরু করেছিল।

ডার্ক এনার্জিকে বলা যায় স্থানের এক রহস্যময় ধর্ম যা সম্পর্কে এখনো খুব বেশি কিছু জানা সম্ভব হয়নি। বিজ্ঞানীরা এখনো জানে না ডার্ক এনার্জি এভাবেই আধিপত্য বিস্তার করতে থাকবে নাকি কোনো একসময় দিক পরিবর্তন করে ফেলবে। তাই শেষ পর্যন্ত মহাবিশ্ব সংকুচিত হবে, নাকি এভাবেই প্রসারিত হতে থাকবে তা এ মুহূর্তেই বলা সম্ভব নয়। তবে বেশিরভাগ বিজ্ঞানীই মনে করেন মহাবিশ্ব এভাবেই প্রসারিত হতে থাকবে।

সেই উনবিংশ শতাব্দীর শুরু থেকে পৃথিবীব্যাপী পদার্থবিজ্ঞানীরা একটি Unified তত্ত্ব বের করার চেষ্টা করে আসছেন। একগুচ্ছ সমীকরণ, যার মাধ্যমে পুরো মহাবিশ্বের সবকিছু ব্যাখ্যা করা যাবে। আইনস্টাইন তার জীবনের শেষ ত্রিশ বছর চেষ্টা করেও কোনো কূলকিনারা করতে পারেননি। তার পরে এখনো বিজ্ঞানীরা চেষ্টা করেই যাচ্ছেন। যতই তারা সামনে এগিয়ে যাচ্ছেন, মহাবিশ্ব যেন ততই নতুন নতুন রহস্য নিয়ে হাজির হচ্ছে। বাস্তব মহাবিশ্ব যে যেকোন রহস্য উপন্যাসের চেয়ে কোনো অংশেই কম না সেটা আমরা মাঝে মাঝেই ভুলে বসে থাকি।

তথ্যসূত্র

১) http://pics-about-space.com/planet-mars-black-and-white?p=2#img7875126582525238326

২) en.wikipedia.org/wiki/Andromeda_Galaxy

৩) en.wikipedia.org/wiki/Solar_mass

৪) www.sudan.umn.edu/cdms/

৫) cdms.berkeley.edu/experiment.html

সেই বিজ্ঞানী যিনি মহাবিশ্বের সম্প্রসারণ এবং প্লুটো প্রায় আবিষ্কার করে ফেলেছিলেন

পৃথিবীতে অনেক বিজ্ঞানীই রয়েছেন। কিন্তু অভাগা বিজ্ঞানী রয়েছেন কয়জন? সেই অভাগা বিজ্ঞানীদের একটা তালিকা করতে গেলে ভেস্টো মেলভিন সিলফারের নাম মনে হয় প্রথম দিকেই আসবে।

Vesto Melvin Slipher (1875-1969), one of astronomy's great unsung heroes. (Credit: Lowell Observatory)
ভেস্টো মালভিন সিলফার

আগের লেখাতে আমরা দেখেছি তিনিই গ্যালাক্সিগুলো যে দূরে সরে যাচ্ছে তা প্রথম পর্যবেক্ষণ করেন। তিনিই গ্যালাক্সির রেড শিফটের আবিষ্কর্তা। কিন্তু তিনি তার তথ্যগুলোকে নির্দিষ্ট কোন ছক বা, সূত্রে ফেলতে সক্ষম হয়েছিলেন না, যা করতে পেরেছিলেন বিজ্ঞানী হাবল। তাই ইতিহাস বিজ্ঞানী হাবলকে এক মহানায়ক হিসেবে মনে রাখলেও দুর্ভাগ্যজনকভাবে ভেস্টো মেলভিন সিলফারের কথা অনেক জ্যোতিপদার্থবিদরাও হয়ত জানেন না। বিষয়টাকে তার দুর্ভাগ্যই বলতে হবে।

আরেকবার মহানায়ক হওয়ার দ্বারপ্রান্তে পৌছে গিয়েছিলেন সিলফার। এই কাজটি করতে পারলেও তিনি ইতিহাসে স্মরণীয় হয়ে যেতে পারতেন। আজ আমরা শুনব সেই কাহিনী।

বর্তমানে সবাই ক্লাইড ডব্লিউ টমবাউকে প্লুটোর আবিষ্কর্তা হিসেবে জানে। কথাটি সত্য। কিন্তু এর পেছনেও আছে লম্বা ইতিহাস।

সিলফার আসলে লয়েল অবজারভেটরিতে লয়েলের অধীনে কাজ করতেন। লয়েলের অনেক ইচ্ছা ছিল নেপচুনেরও পরে কোন গ্রহ খুঁজে বের করা। লয়েল ১৯১৬ সালে মারা যান। লয়েলের সম্মানে সিলফার ১৯২৯ সালে প্ল্যানেট এক্সের খুবই শৃঙ্খলাবদ্ধ খোঁজ শুরু করলেন। প্লুটোর খোজের জন্য আকাশের প্রতি ইঞ্চি ইঞ্চি জায়গার ছবির দরকার ছিল। এ ছবিগুলো প্রতি সপ্তাহে সংগ্রহ করা হত এবং একটা অস্পষ্ট কিন্তু গতিশীল বস্তু খোজা হচ্ছিল। তিন লাখ তারার মাঝে এমন ছবি তোলা খুবই পরিশ্রমের এবং ধৈর্য্যের কাজ ছিল। সুতরাং সিলফার  ক্লাইড ডব্লিউ টমবাউকে এ কাজের জন্য নিযুক্ত করলেন। টম্বাউ এর বয়স ছিল মাত্র ২৩ বছর। সে খুবই নতুন জ্যোতির্বিদ ছিল। কিন্তু সে ছিল সঠিক ফলাফলের প্রতি খুঁতখুঁতে। তার ধৈর্য্যও ছিল অসীম। এ ব্যাপারটি লক্ষ্য করেই সিলফার তাকে কাজটি দেন।

Image result
ক্লাইড ডব্লিউ টমবাউ

লয়েল বের করেছিলেন যে প্ল্যানেট এক্সকে যদি খুঁজে পাওয়া যায় অবে তাকে জেমিনি নক্ষত্রপুঞ্জের মাঝে খুঁজে পাওয়া যাবে। লয়েল যেসব যুক্তি ব্যবহার করে এটা বের করেছিলেন তা ছিল ভুলে ভরা। কিন্তু তিনি চরমমাত্রার ভাগ্যবান হিসেবে আবির্ভূত হলেন। ভুলভাল হিসাব নিকাশ আর যুক্তির পরও তার ধারণা সঠিক ছিল। সিলফার লয়েলের বলে দেয়া জায়গাটাতেই প্ল্যানেট এক্সকে খোঁজার কাজ শুরু করেন। টমবাউ ছবিগুলো নিত এবং সেগুলো পরীক্ষা করে দেখত। সিলফারের পদ্ধতিটি ছিল আকাশের একই জায়গার ভিন্ন সময়ের এক জোড়া ছবি বার বার দেখে কোন পার্থক্য পাওয়া যায় কিনা তা বের করা, যাকে বিজ্ঞানের ভাষায় ব্লিঙ্কিং পদ্ধতি বলে। যদি কোন গ্রহ তারা গুলোর মাঝ দিয়ে ঘুরে বেড়ায় তাহলে তাদের এক স্থান থেকে অন্য স্থানে যাওয়ার অস্তিত্ব ধরা পড়ার কথা এ পদ্ধতিতে।

কিন্তু সিলফার তখন লয়েল অবজারভেটরির প্রধান ছিলেন। তার এর বাইরেও অনেক অনেক কাজ ছিল। তিনি বেশ কয়েক সপ্তাহ জেমিনি নক্ষত্রপুঞ্জের আশে পাশে প্ল্যানেট এক্সকে খুঁজে বেরালেন এবং অবশেষে অবজারভেটরির প্রধান হিসেবে বিভিন্ন দায়িত্বের চাপে এক পর্যায়ে এসে প্ল্যানেট এক্সকে খোঁজা বাদ দিয়ে দিলেন। তিনি সম্পূর্ণ প্রজেক্টটি টমবাউ এর হাতে তুলে দিলেন। দায়িত্ব নিয়ে টমবাউ বুঝলেন সিলফার একটু দ্রুতই একের পর এক ছবি নিয়েছিলেন। এত দূরের অস্পষ্ট এক প্ল্যানেট এক্সকে খুঁজে বের করতে হলে আরো দীর্ঘ সময়ের বিরতিতে ছবি তুলতে হবে। টমবাউ আবার প্রথম থেকে ছবি নেয়া শুরু করলেন।

Discovery photos of Pluto, taken by Clyde Tombaugh under Vesto Slipher's direction. (Credit: Lowell Observatory)

১৮ ফেব্রুয়ারি, ১৯৩০। এল সেই মাহেন্দ্রক্ষণ। টমবাউ প্লুটো আবিষ্কার করলেন। খুঁজে পেলেন সঊরজগতের নবম গ্রহ। সিলফার যেখানে গ্রহটি খুজছিলেন তার ঠিক কাছেই। অনেকেই বলে থাকে সিলফার আগেই গ্রহটি দেখেছিলেনও, কিন্তু আসলে বুঝতে পারেননি।

Image result
তৎকালীন পত্রিকায় প্লুটো আবিষ্কারের খবর

টমবাউ প্লুটোর আবিষ্কর্তা হয়ে গেলেন। সিলফার কিন্তু ব্যররথ হওয়াতে হতাশা বা, কোনরকম অনুশোচনা প্রকাশ করলেন না। সবচেয়ে গুরুত্বপূর্ণ বিষয় তিনি এ আবিষ্কারের কোনরকম আংশিক কৃতিত্বও দাবী করলেন না। তিনি জোর করে পুরো বিষয়টি কেড়েও নেননি। তিনি সহজেই এটা বলতে পারতেন যে টমবাউ তার নিযুক্ত সহকারি ছিল, যে তার প্রজেক্টে কাজ করছে মাত্র, যা পুরোপুরি সত্য একটি কথা। এমনকি সিলফার তখন বেশ বড় রকমের পদার্থবিদ হলেও টমবাউ ছিলেন মাত্র ২৪ বছরের এক তরুণ। সুতরাং প্লুটো আবিষ্কারের কৃতিত্ব নিজের করে নেয়া খুব একটা কঠিন ছিল না সিলফারের জন্য।

কিন্তু সিলফার ছিলেন বেশ ভদ্র এবং সৎ লোক। অথচ প্লুটো আবিষ্কারে তার অবদান অনস্বীকার্য। কিন্তু তারপরও মহাবিশ্বের সম্প্রসারণ আর প্লুটো উভয় আবিষ্কারের খুব কাছাকাছি থেকেও নিজেই সেটা ঠিকমত বুঝতে না পারায় সিলফার ইতিহাস থেকে প্রায় মুছে যাওয়া এক বিজ্ঞানীর নামই হয়ে আছে।

অজানা অদৃশ্য মহাবিশ্ব

আমাদের সূর্য আকাশগঙ্গা ছায়াপথের ঘূর্ণায়মান বাহুর একপাশে অবস্থান করছে। রাতের আকাশের দিকে খালি চোখে তাকালে আমরা যে এক হাজারের মতো নক্ষত্র দেখতে পাই তার বেশিরভাগই আকাশগঙ্গায় অবস্থিত। খালি চোখে না তাকিয়ে একটি সাধারণ মানের দূরবীন ব্যবহার করলে চোখের সামনে নক্ষত্রের সংখ্যা আরো কয়েক গুণ বেড়ে যাবে। যাকে এখন সাধারণ মানের দূরবীন বলা হচ্ছে একটা সময় কিন্তু বিজ্ঞানীদের সবচেয়ে শক্তিশালী টেলিস্কোপও এর সাথে পাল্লা দিতে পারতো না। তাই খুব স্বাভাবিকভাবেই মানুষের ধারণা ছিল আকাশগঙ্গা ছায়াপথই আমাদের সম্পূর্ণ মহাবিশ্ব। ১৯২০ সালের আগ পর্যন্ত প্রযুক্তি ব্যবহার করে আকাশগঙ্গার চেয়ে বেশি কিছু দেখা সম্ভব ছিল না। প্রযুক্তির উন্নতির সাথে সাথে বিজ্ঞানীদের টেলিস্কোপের ক্ষমতাও বাড়তে লাগল। নতুন নতুন শক্তিশালী টেলিস্কোপ আকাশের দিকে তাক করে বিজ্ঞানীরা একেবারে অবাক হয়ে গেলেন।

১৯২০ সালের দিকে বিজ্ঞানী এডউইন হাবল আবিষ্কার করলেন এই মহাবিশ্ব আকাশগঙ্গা ছায়াপথ চেয়েও অনেক বেশি বড়। আগে যেসব ঝাপসা আলোর বিন্দুকে অনেক দূরবর্তী নক্ষত্র ভাবা হতো, তাদের অনেকগুলোই আসলে আকাশগঙ্গার মতোই আলাদা আলাদা গ্যালাক্সি! জ্যোতির্বিজ্ঞানীরা প্রতিদিন নতুন নতুন গ্যালাক্সি আবিষ্কার করতে শুরু করলেন। সেই সময় Fritz Zwicky ছিলেন ক্যালটেকের প্রফেসর। তিনি Coma cluster-এর গ্যালাক্সিগুলো পর্যবেক্ষণ করছিলেন। আশেপাশের অন্যান্য গ্যালাক্সিগুলোর সাপেক্ষে কোনো একটি গ্যালাক্সির গতিবেগ পর্যবেক্ষণ করে তাদের মধ্যে কতটুকু ভর আছে সেটি বের করা সম্ভব।

প্রফেসর Fritz Zwicky, coma cluster-এর গ্যালাক্সিগুলোর গতিবেগ মেপে নিয়ে তার মধ্যে ঠিক কতটুকু ভর থাকতে পারে তা হিসেব করে বের করে নিলেন। কিন্তু এই ভরকে দৃশ্যমান ভরের সাথে তুলনা করতে গিয়ে কিছুতেই হিসেব মেলাতে পারলেন না। দৃশ্যমান ভর বলতে বোঝানো হয় গ্যালাক্সির যেসব নক্ষত্র আলো বিকিরণ করে কিংবা যেসব ধূলিকণা, গ্যাসের মেঘ নক্ষত্রের আলোকে আটকে দেয়। মোটকথা গ্যলাক্সির দিকে তাকিয়ে আমরা যেটুকু দেখতে পাই তার মোট ভর। Fritz Zwicky-এর হিসেব অনুযায়ী ক্লাস্টারের মধ্যে গ্যালাক্সিগুলোর যে গতিবেগ ততটুকু গতিবেগ অর্জন করতে হলে গ্যালাক্সিগুলোতে তাদের দৃশ্যমান ভরের প্রায় ১৬০ গুণ বেশি ভর থাকা উচিৎ ছিল।

তার মানে অদৃশ্য কোনো ভর গ্যালাক্সিগুলোর এই গতিবেগের জন্য দায়ী। সেই অদৃশ্য ভরকে কোনোভাবেই খুঁজে পাওয়া গেল না। তিনি অনেকভাবে হিসেব করে দেখলেন, একটি বিশাল পরিমাণ অদৃশ্য ভর না থাকলে Coma cluster-এর ভারসাম্য বজায় থাকত না। তিনি এই অদৃশ্য ভরের নাম দিলেন ‘হারানো ভর’ বা Missing matter।

ধরা-ছোঁয়া যায় এমন প্রায় সবকিছুর ভরই দাঁড়িপাল্লার নীতি ব্যবহার করে মেপে বের করে ফেলা যায়। কিন্তু পৃথিবী থেকে অকল্পনীয় দূরত্বে অবস্থিত এসব নক্ষত্র কিংবা গ্যালাক্সির ভর বিজ্ঞানীরা ঠিক কীভাবে মাপেন? পৃথিবীর ভর প্রায়  কেজি, সূর্যের ভর প্রায়  কেজি, বৃহস্পতির ভর প্রায়  কেজি, মিল্কিওয়ের ভর সূর্যের ভরের প্রায়  গুণ, এন্ড্রোমিডা গ্যালাক্সির ভর সূর্যের ভরের প্রায়  গুণ।

কিন্তু এন্ড্রোমিডা গ্যালাক্সির কাছে গিয়ে গ্যালাক্সিটাকে একটা দাঁড়িপাল্লায় নিয়ে ভর মেপে নেয়ার কোনো উপায় নেই। তাই বিজ্ঞানীরা ধরা ছোঁয়ার বাইরের অনেক দূরবর্তী পদার্থের ভর মাপেন একটু বাঁকা পথে। পথটা বাঁকা হলেও পদ্ধতিটি খুব সহজ। আমরা জানি একটি বস্তুর ভর যত বেশি হবে তার মহাকর্ষীয় আকর্ষণ হবে তত বেশি। আর বস্তুটি থেকে দূরত্ব যত বাড়তে থাকবে তার মহাকর্ষীয় আকর্ষণও ততই কমে যাবে (বুধ সূর্যের সবচেয়ে কাছের গ্রহ এবং ঠিক এ কারণেই সূর্যের চারিদিকে নিজের কক্ষপথে ভারসাম্য বজায় রাখতে বুধের গতিবেগ সবচেয়ে বেশি। নেপচুনের গতিবেগ সেই তুলনায় অনেক অনেক কম)। তাই আশেপাশের গ্রহ, নক্ষত্র, গ্যাসের মেঘ ইত্যাদির গতিবেগ এবং দূরত্ব থেকে খুব সহজেই ভরটুক বের করে ফেলা যায়।

2চিত্রঃ বুধ সূর্যের সবচেয়ে কাছের গ্রহ। তাই বুধের গতিবেগ সবচেয়ে বেশি।

একটি ভরকে ঘিরে ঘুরপাক খাওয়া পদার্থের আরেকটি উদাহরণ হলো সর্পিলাকার গ্যালাক্সি। যেসব গ্যলাক্সির একটি অত্যন্ত ভারী কেন্দ্র থাকে এবং গ্যালাক্সির সকল নক্ষত্র সেই ভারী কেন্দ্রকে ঘিরে ঘুরতে থাকে তদেরকে বলা হয় সর্পিলাকার গ্যালাক্সি। তাই ঠিক একইরকম হওয়ার কথা সর্পিলাকার গ্যালাক্সির ক্ষেত্রেও। অর্থাৎ বাইরের দিকের নক্ষত্রগুলোর ঘূর্ণন বেগ কেন্দ্রের দিকে নক্ষত্রগুলোর চেয়ে অনেক কম হবে। বিজ্ঞানী ভেরা রুবিন কিন্তু সেরকমটি দেখলেন না।

3চিত্রঃ সর্পিলাকার গ্যালাক্সি।

মিল্কিওয়ের মতো সর্পিল গ্যালাক্সিগুলোর ঘূর্ণন পর্যবেক্ষণ করতে করতে তিনি দেখলেন গ্যালাক্সিগুলোর কেন্দ্র থেকে দূরে সরে গেলে যেমন নক্ষত্র, গ্যাস আর ধুলিকণার মেঘের গতিবেগ কমে যাওয়ার কথা ছিল, তেমনটি হচ্ছে না। বরং গতিবেগ প্রায় সমান সমান।

ভেরা রুবিনের হিসেব অনুযায়ী গ্যালাক্সিগুলোতে দৃশ্যমান যতটুক ভর আছে এবং সেই ভরের জন্য গ্যালাক্সির মধ্যে নক্ষত্র, গ্যাসের মেঘের যতটুক গতিবেগ নিয়ে ঘোরার কথা ছিল তার তুলনায় এ গতিবেগ প্রায় দশগুণ বেশি। তারমানে নিশ্চয়ই গ্যলাক্সির মধ্যে এমন কোনো পদার্থ আছে যা গ্যালাক্সির এই গতির জন্য দায়ী এবং কোনো এক কারণে আমরা তাদের দেখতে পাচ্ছি না। রুবিন হিসেব করে বের করলেন, এমনটা হবে যদি গ্যালাক্সির মধ্যে অদৃশ্য ভরের পরিমাণ দৃশ্যমান ভরের দশগুণ হয়।

অদৃশ্য পদার্থকে এখন বলা হয় ‘Dark matter’। তারপর থেকে বিজ্ঞানীরা শত শত গ্যালাক্সি পর্যবেক্ষণ করেছেন। সব ক্ষেত্রেই সেই একই ব্যাপার। কিন্তু বহুবার বহুভাবে চেষ্টা করেও বিজ্ঞানীরা কোনোভাবেই ডার্ক ম্যাটার খুঁজে পেলেন না। যে বস্তুকে চোখেই দেখা যায় না তাকে খুঁজে পাবেন কীভাবে?

ডার্ক ম্যাটার সম্ভবত প্রকৃতির সবচেয়ে রহস্যময় আর আশ্চর্যজনক বস্তুগুলোর মধ্যে একটি। ডার্ক ম্যাটার আমাদের পরিচিত কোনো পদার্থের সাথে কোনোরকম মিথস্ক্রিয়া করে না। তবে আর কিছুই না হোক ডার্ক ম্যাটারের ভর আছে (এই ভর যেকোনো হিসেবে বিশাল, বিজ্ঞানীরা এখন জানেন আমাদের মহাবিশ্বের ২৩ শতাংশই হলো ডার্ক ম্যাটার)। আইনস্টাইনের আপেক্ষিকতার সাধারণ তত্ত্ব থেকে আমরা দেখেছি, যেকোনো ভর তার আশেপাশের স্থানকে বাঁকিয়ে ফেলে। তাই মহাকাশে কোথাও ডার্ক ম্যাটার থাকলে তা নিজের ভরের জন্য আশেপাশের স্থানকে বাঁকিয়ে ফেলবে।

কোনো দূরবর্তী গ্যালাক্সি বা নক্ষত্র আর আমাদের দৃষ্টির মাঝে যদি ডার্ক ম্যাটার চলে আসে তবে সেই গ্যালাক্সি বা নক্ষত্র থেকে আসা আলো বেঁকে যাবে। আমরা বুঝে ফেলব মাঝে প্রচণ্ড ভারী কিছু একটা আছে। শুধু সেই ভরকে আমরা দেখতে পাচ্ছি না! ভারী বস্তুর আলোকে বাঁকিয়ে দেয়ার ধর্মকে পদার্থবিজ্ঞানীরা বলেন Gravitational Lensing।

গ্র্যাভিটেশনাল ল্যান্সিং শুনতে যতটা খটমটে, বাস্তবে ঠিক ততটাই কাজের জিনিস। গ্র্যাভিটেশনাল ল্যান্সিং এর মাধ্যমে বিজ্ঞানীরা শুধুমাত্র ডার্ক ম্যাটারের অস্তিত্ব বুঝতে পারেন তাই নয়, কোনো জায়গায় ঠিক কতটুকু ডার্ক ম্যাটার আছে, কীভাবে বিন্যস্ত আছে সব বের করতে পারেন। জ্যোতির্বিজ্ঞানীরা দেখেছেন একেকটি গ্যালাক্সির মোট ভরের বেশিরভাগই আসলে ডার্ক ম্যাটারের ভর। গ্যালাক্সিগুলোতে নক্ষত্র, ধূলিকণা এবং গ্যাসের মেঘ ছাড়া যেসব ফাঁকা স্থান আছে সেগুলো আসলে ঠিক ফাঁকা নয়, সেখানে আছে ডার্ক ম্যাটার। বিজ্ঞানীরা রীতিমতো ডার্ক ম্যাটারের ম্যাপও তৈরি করে ফেলেছেন।

4চিত্রঃ ডার্ক ম্যাটারের ভরের জন্য গালাক্সি থেকে আসা আলো বেঁকে যাচ্ছে।

ডার্ক ম্যাটার খুঁজে পাওয়ার পর পরই সবচেয়ে যুক্তিসঙ্গত প্রশ্ন, এটি তৈরি হয়েছে কী দিয়ে? আমাদের চেনা পরিচিত অণু-পরমাণু নাকি অজানা কোনো কণা দিয়ে?

সবচেয়ে সহজ ব্যাখ্যা হতে পারে, ডার্ক ম্যাটার আসলে আমাদের চেনা জানা অণু-পরমাণু দিয়েই তৈরি। শুধু তারা আলো বিকিরণ করে না বলে আমরা দেখতে পাই না। অণু-পরমাণু দিয়ে তৈরি কিন্তু আলো বিকিরণ করে না এমন অনেক পদার্থের কথাই আমরা জানি। সবার প্রথমে আসে ব্ল্যাকহোল। ব্ল্যাকহোল আলো বিকিরণ করে না, প্রচণ্ড মহাকর্ষ বলে সবকিছু নিজের দিকে টানতে থাকে। গ্র্যাভিটেশনাল ল্যান্সিং ব্যবহার করে তাদের খুঁজে বের করতে হয়।

তারপরেই আসে M.A.C.H.O. বা Massive Compact Halo Object। এরা আসলে ছোট ছোট ভারী নক্ষত্র যারা খুব অল্প আলো বিকিরণ করে। এদেরকেও গ্র্যাভিটেশনাল ল্যান্সিং দিয়ে খুঁজে বের করতে হয়। তাছাড়া আছে Brown dwarf. এরা যথেষ্ট ভারী কিন্তু খুব বেশি আলো বিকিরণ করে না। কিন্তু গ্যালাক্সি আর ক্লাস্টারগুলোতে ডার্ক ম্যাটারের পরিমাণ এতো বেশি যে এসব কিছুও যথেষ্ট না। এক একটি গ্যালাক্সিতে ডার্ক ম্যাটারের পরিমাণ দৃশ্যমান ভরের প্রায় দশ গুণ। শুরুর দিকে নিউট্রিনো বা এক্সিওন এর কথাও চিন্তা করা হয়েছিল। কিন্তু এরা খুবই হালকা ভরের কণিকা। এরপর আর একটি সম্ভাবনাই বাকি থাকে। হয়তো ডার্ক ম্যাটার নতুন ধরনের কোনো কণিকা দ্বারা তৈরি যাদের আমরা এখনো খুঁজে পাইনি।

আমাদের চেনা পরিচিত অণু-পরমাণু দিয়ে তৈরি না হলেও ডার্ক ম্যাটারের বৈশিষ্ট্য কীরকম হতে পারে তা বিজ্ঞানীরা বের করেছেন। এরা আলোর মতো দ্রুত গতির নয়। এরা আমাদের পরিচিত সাধারণ সকল পদার্থকে মহাকর্ষ বলে আকর্ষণ করে এবং মহাকর্ষ ছাড়া অন্য কোনোভাবে পদার্থের সাথে মিথস্ক্রিয়া করে না। আমাদের শরীরের মধ্য দিয়ে প্রতি মুহূর্তে অসংখ্য ডার্ক ম্যাটারের কণিকা এপাশ থেকে ওপাশে চলে যাচ্ছে, আমরা টের পাচ্ছি না। কারণ তারা কোনোভাবেই অণু-পরমাণুকে প্রভাবিত করে না। বিজ্ঞানীরা এই সম্ভাব্য কণিকার নাম দিয়েছেন WIMP (Weakly Interacting Massive Particle)। নাম শুনেই বোঝা যাচ্ছে তারা খুবই দুর্বলভাবে মিথস্ক্রিয়া করে। তাই এখন পর্যন্ত WIMP আবিষ্কার করা সম্ভব হয়নি।

তাই বলে বিজ্ঞানীরা বসে থাকেননি। আমেরিকার Soudan-এ মাটির নিচে একটি পরিত্যাক্ত লোহার খনিতে প্রায় অর্ধমাইল নীচে ল্যাবরেটরি তৈরি করেছেন। এই ল্যাবে শূন্য কেলভিনেরও কম তাপমাত্রায় ১৬টি জার্মেনিয়াম সেন্সর বসানো আছে। সেন্সরগুলোতে জার্মেনিয়ামের ঘনত্ব খুব বেশি, পরমাণুগুলো খুব কাছাকাছি, প্রায় গায়ে গায়ে লেগে থাকে। সেন্সরটিকে যখন শূন্য কেলভিনের নিচে নিয়ে যাওয়া হয় তখন এটি অনেকটা থার্মোমিটারের মতো কাজ করে। কোনো কণা বা রশ্মি এই সেন্সরের মধ্য দিয়ে চলে গেলেই বিজ্ঞানীরা কণা বা রশ্মির বৈশিষ্ট্য হিসেব করে বের করে ফেলতে পারেন।

এই সেন্সর থেকে খুব সূক্ষ্ম মান পাওয়া যায়। কিন্তু পৃথিবীপৃষ্ঠে এটি নিয়ে কাজ করার খুব বড় রকমের একটি সমস্যা আছে। অনেকে নিশ্চয়ই শুনে থাকবেন সূর্য থেকে প্রতিনিয়ত নিউট্রিনো এসে পৃথিবীকে আঘাত করছে। সেই সাথে আছে মিউওন, বিভিন্ন মহাজাগতিক রশ্মি, পৃথিবীপৃষ্ঠে মানবসৃষ্ট বিভিন্ন রশ্মি। সেন্সরগুলো এতটাই সংবেদনশীল যে যেকোনো ধরনের কণার আঘাতেই বিক্ষেপ দেখাবে। এতসব সমস্যাকে পাশ কাটাতে বিজ্ঞানীরা মাটির নিচে ল্যাবরেটরি তৈরি করেছেন। মাটির বিভিন্ন স্তর ভেদ করে সব ধরনের কণা এবং রশ্মি সেন্সর পর্যন্ত পৌঁছাতে পারে না। বিজ্ঞানীরা আশা করছেন পরম শূন্যের কাছাকাছি তাপমাত্রায় রাখা জার্মেনিয়াম সেন্সরে কোনো একদিন একটি WIMP কণিকা আঘাত করবে। যদিও WIMP কণিকা অণু-পরমাণুর সাথে এতই দুর্বলভাবে মিথস্ক্রিয়া করার কথা যে, জার্মেনিয়াম সেন্সর দিয়ে WIMP কণিকা ধরা অনেকটা খড়ের গাদায় সূঁচ খোঁজার মতোই ব্যাপার। বিজ্ঞানীরা এখনো WIMP কণিকা ধরতে পারেননি, এখনো পরীক্ষা নিরীক্ষা চালানো হচ্ছে।

5চিত্রঃ ভূমির গভীরে এই স্থানে অবস্থিত গবেষণাগার। পূর্বে এটি স্বর্ণ উত্তোলন খনি ছিল।

শুনতে অবাক লাগবে, মহাবিশ্বের প্রায় ২৩ শতাংশ ডার্ক ম্যাটার হলেও টেলিস্কোপ দিয়ে দৃশ্যমান আলো ব্যবহার করে আমরা যতটুকু বস্তু দেখতে পাই সেটি মহাবিশ্বের ৪ শতাংশ মাত্র। মহাবিশ্বে গ্যালাক্সিগুলো সুষমভাবে না থেকে ছাড়াছাড়াভাবে ছড়িয়ে থাকার কারণও ডার্ক ম্যাটার। কঙ্কাল যেমন দেহের আকারের পেছনে কাজ করে ডার্ক ম্যাটারের ক্ষেত্রেও সেই একই ব্যাপার। এখানে ২৩ + ৪ = ২৭ শতাংশের কথা বলা হয়েছে মাত্র। সেটি নিশ্চয়ই অনেকের চোখ এড়িয়ে গেছে। মহাবিশ্বের বাকি ৭৩ শতাংশ খুঁজতে গিয়ে দেখা গেল সেটা অজানা এক ধরনের Energy। বিজ্ঞানীরা বলেন ‘Dark Energy’।

একসময় ভাবা হতো আমাদের মহাবিশ্ব স্থির। সর্বপ্রথম ১৯২৯ সালে এডউইন হাবল দেখলেন মহাবিশ্ব মোটেও স্থির নয়। দূরবর্তী গ্যালাক্সিগুলো থেকে আলোর শিফট দেখে বলে দেয়া যায় তারা আমাদের দিকে এগিয়ে আসছে নাকি দূরে সরে যাচ্ছে। রেড শিফট অর্থাৎ আলো লালের দিকে সরে গেলে বুঝতে হবে দূরে সরে যাচ্ছে, আর ব্লু শিফট হলে বা নীলের দিকে হলে বুঝতে হবে এগিয়ে আসছে। এডউইন হাবল আকাশের সবদিকের গ্যালাক্সি থেকেই রেড শিফট পেলেন। প্রথম দেখায় মনে হতে পারে পৃথিবী বুঝি মহাবিশ্বের কেন্দ্র আর বাকি সব পৃথিবী থেকে দূরে সরে যাচ্ছে। কিন্তু ভালো করে লক্ষ্য করে দেখা গেলো পৃথিবী থেকে একটি গ্যালাক্সি যত দূরে তার দূরে ছুটে যাওয়ার হারও ততই বেশি। যার একটিই অর্থ হতে পারে- পৃথিবী মোটেই মহাবিশ্বের কেন্দ্র নয়, পৃথিবীসহ মহাবিশ্বের সবকিছু একটি অন্যটি থেকে দূরে সরে যাচ্ছে। সোজা বাংলায়, মহাবিশ্ব সম্প্রসারিত হচ্ছে।

মহাবিশ্বের সম্প্রসারণশীলতা আবিষ্কৃত হবার পর সবার আগে যেটা মাথায় আসে, একটা সময় মহাবিশ্বের সবকিছু নিশ্চয়ই এক জায়গায় একত্রিত ছিল। তারপর একদিন হঠাৎ কোনো বিস্ফোরণ বা অন্য কোনো কারণে সব আলাদা হয়ে বাইরের দিকে ছুটে যেতে শুরু করলো। বিজ্ঞানীরা এ বিস্ফোরণকে বলেন বিগ ব্যাং। বিগ ব্যাং-এর আগে মহাবিশ্বের সবকিছু একবিন্দুতে একত্রিত অবস্থায় ছিল। বিজ্ঞানীদের ধারণা ছিল বিগ ব্যাং-এর প্রবল ধাক্কার ফলাফল হিসেবে মহাবিশ্ব এখনো সম্প্রসারিত হচ্ছে। বিস্ফোরণের পরপরই মহাকর্ষ বল সম্প্রসারণের বেগটাকে কমানোর চেষ্টা করে যাচ্ছে। তাই একসময় সম্প্রসারণের বেগ কমতে কমতে মহাবিশ্ব স্থির হয়ে যাবে। তারপর মহাকর্ষের প্রভাবে আবার সংকোচন শুরু হবে। এর মাঝে বলে নেই, মহাবিশ্বের সম্প্রসারণ শুধুমাত্র স্থানের মধ্যে নক্ষত্র, গ্যালাক্সি, ধূলিকণা ইত্যাদির পরস্পর থেকে দূরে সরে যাওয়ার মতো ঘটনা না। সেরকম কিছু হলে পৃথিবী ধীরে ধীরে সূর্য থেকে দূরে সরে যেতো। স্থান শাশ্বত কিছু নয়। বিগ ব্যাং এর ফলে পদার্থের সাথে সাথে স্থানও সৃষ্টি হয়েছিল এবং মহাবিশ্বের সম্প্রসারণ বলতে নক্ষত্র, গ্যালাক্সি, ধূলিকণা ইত্যাদির মধ্যবর্তী স্থানের সম্প্রসারণ বোঝানো হয়েছে।

কেউ যদি প্রশ্ন করে আমাদের মহাবিশ্বের পরিণতি কী? একটি সম্ভাব্য উত্তর হবার কথা ছিল- এখন মহাবিশ্ব সম্প্রসারিত হচ্ছে। মহাকর্ষের কারণে ধীরে ধীরে এ সম্প্রসারণের বেগ কমে আসার কথা এবং শেষ পর্যন্ত মহাবিশ্ব সংকুচিত হতে হতে আবার একটি বিন্দুতে চলে আসার কথা। বিজ্ঞানীরা মোটামুটি নিশ্চিত ছিলেন মহাবিশ্বের সম্প্রসারণের হার ধীরে ধীরে কমে আসছে। তাই বছর কয়েক আগে কয়েকজন পদার্থবিজ্ঞানী ভাবলেন সম্প্রসারণ কমে আসার হারটা বের করা যাক। সেটা বের করতে হলে প্রথমেই জানা দরকার বিগ ব্যাং-এর পর থেকে বিভিন্ন সময়ে মহাবিশ্বের সম্প্রসারণের গতিবেগ কেমন ছিল।

বর্তমান সময়ে বসে কীভাবে অতীতের সম্প্রসারণ বেগ বের করা যায়? তার জন্য খুব সহজ উপায় আছে। ধরা যাক, এই মুহূর্তে পৃথিবী থেকে দশ হাজার আলোকবর্ষ দূরের একটি গ্যালাক্সি থেকে আলো আসছে। তার মানে হচ্ছে, গ্যলাক্সিটা থেকে দশ হাজার বছর আগে যে আলোটুকু পৃথিবীর দিকে রওনা দিয়েছিল সেই আলোটুকু পৃথিবী আর গ্যালাক্সিটার মধ্যবর্তী দূরত্ব অতিক্রম করে এই মাত্র আমাদের কাছে এসে পৌঁছলো। আমরা যদি এই আলোর রেড শিফট মাপি তাহলে পৃথিবী থেকে গ্যালাক্সির দূরে সরে যাওয়ার যে বেগ পাবো সেটা হচ্ছে দশ হাজার বছর আগের সম্প্রসারণের গতিবেগ। বর্তমানে সেই গতিবেগ হয়তো অনেক পরিবর্তন হয়ে গেছে। কিন্তু এখনই সেটি জানার কোনো উপায় নেই। সেটি জানতে হলে আরো দশ হাজার বছর ধৈর্য ধরে অপেক্ষা করতে হবে।

ঠিক একই পদ্ধতিতে আরও কাছের বা দূরের গ্যালাক্সি বা আলোকিত কোনো বস্তুর রেড শিফট মেপে বিভিন্ন সময়ে সম্প্রসারণের বেগ বের করা সম্ভব (খুব সূক্ষ্মভাবে রেড শিফট মাপার জন্য দরকার খুব উজ্জ্বল লক্ষ্যবস্তু। বিজ্ঞানীরা তাই মহাকাশে সবচেয়ে উজ্জ্বল টাইপ-১ সুপারনোভা ব্যবহার করেন)। বিজ্ঞানীদের দুটি দল আলাদা আলাদাভাবে প্রায় ৬০ টি সুপারনোভার রেড শিফট মেপে একেবারে হতভম্ব হয়ে গেলেন। মহাবিশ্বের সম্প্রসারণের হার মোটেই কমে যাচ্ছে না, বরং তা ত্বরিত হারে বাড়ছে।

বারবার ফলাফল পুনঃনিরীক্ষণ করেও বিজ্ঞানীরা একই ফল পেলেন। যার অর্থ হচ্ছে মহাবিশ্বে এক ধরনের এনার্জি বিদ্যমান যা বিকর্ষণধর্মী বল সৃষ্টি করে স্থানের সম্প্রসারণ করে যাচ্ছে। একেই বিজ্ঞানীরা বলেন Dark Energy। এই ডার্ক এনার্জিই মহাবিশ্বের বাকি ৭৩ শতাংশ তৈরি করেছে। বিজ্ঞানীদের ধারণা ডার্ক ম্যাটার আর ডার্ক এনার্জি বিগ ব্যাং-এর সাথে সাথেই সৃষ্টি হয়েছিল। সম্প্রসারণের হার বের করতে গিয়ে দেখা গেল, বিগ ব্যাং-এর পরে প্রথম ৯ বিলিয়ন বছর মহাবিশ্বের সম্প্রসারণের হার ধীরে ধীরে কমে আসছিল। ঠিক তার পরপরই হঠাৎ করে সম্প্রসারণের হার বাড়তে শুরু করেছিল এবং গত পাঁচ বিলিয়ন বছর ধরে এ হার বেড়েই চলেছে।

যার অর্থ হচ্ছে- প্রথমদিকে মহাবিশ্বে ডার্ক ম্যাটার আর সাধারণ পদার্থের মহাকর্ষের আধিপত্য ছিল। তাই সম্প্রসারণের হার কমে যাচ্ছিল। যতই সময় গেল আর মহাবিশ্ব বড় হতে লাগল, ধীরে ধীরে ডার্ক এনার্জির আধিপত্য শুরু হলো। সম্প্রসারণের বেগ আবার বেড়ে যেতে শুরু করল। তাই বিজ্ঞানীদের ধারণা উচ্চ তাপমাত্রা আর অধিক ঘনত্বে (মহাবিশ্বের শুরুর অবস্থা) ডার্ক এনার্জির ক্রিয়া ধর্তব্যের মাঝে আসবে না। তাপমাত্রা যতই কমে আসবে, ঘনত্ব যতই কমে আসবে, ডার্ক এনার্জি ততই মহাকর্ষ বলের ওপর আধিপত্য বিস্তার করতে থাকবে। পাঁচ বিলিয়ন বছর আগে এ কারণেই আবার সম্প্রসারণের বেগ বাড়তে শুরু করেছিল।

ডার্ক এনার্জিকে বলা যায় স্থানের এক রহস্যময় ধর্ম যা সম্পর্কে এখনো খুব বেশি কিছু জানা সম্ভব হয়নি। বিজ্ঞানীরা এখনো জানে না ডার্ক এনার্জি এভাবেই আধিপত্য বিস্তার করতে থাকবে নাকি কোনো একসময় দিক পরিবর্তন করে ফেলবে। তাই শেষ পর্যন্ত মহাবিশ্ব সংকুচিত হবে, নাকি এভাবেই প্রসারিত হতে থাকবে তা এ মুহূর্তেই বলা সম্ভব নয়। তবে বেশিরভাগ বিজ্ঞানীই মনে করেন মহাবিশ্ব এভাবেই প্রসারিত হতে থাকবে।

সেই উনবিংশ শতাব্দীর শুরু থেকে পৃথিবীব্যাপী পদার্থবিজ্ঞানীরা একটি Unified তত্ত্ব বের করার চেষ্টা করে আসছেন। একগুচ্ছ সমীকরণ, যার মাধ্যমে পুরো মহাবিশ্বের সবকিছু ব্যাখ্যা করা যাবে। আইনস্টাইন তার জীবনের শেষ ত্রিশ বছর চেষ্টা করেও কোনো কূলকিনারা করতে পারেননি। তার পরে এখনো বিজ্ঞানীরা চেষ্টা করেই যাচ্ছেন। যতই তারা সামনে এগিয়ে যাচ্ছেন, মহাবিশ্ব যেন ততই নতুন নতুন রহস্য নিয়ে হাজির হচ্ছে। বাস্তব মহাবিশ্ব যে যেকোন রহস্য উপন্যাসের চেয়ে কোনো অংশেই কম না সেটা আমরা মাঝে মাঝেই ভুলে বসে থাকি।

তথ্যসূত্র

১) http://pics-about-space.com/planet-mars-black-and-white?p=2#img7875126582525238326

২) en.wikipedia.org/wiki/Andromeda_Galaxy

৩) en.wikipedia.org/wiki/Solar_mass

৪) www.sudan.umn.edu/cdms/

৫) cdms.berkeley.edu/experiment.html