ইথারকে বাঁচাতে ফিটজগেরাল্ড-লরেন্টজের হাইপোথিসিস

ইতিহাসে ১৮৮৭ সালে মাইকেলসন-মর্লির ইথারের বিখ্যাত পরীক্ষাটিই ইথার ধারণাকে একরকম প্রায় বাতিলই করে দিয়েছিল। কিন্তু বিজ্ঞানীরা তো আর এত সহজে হাল ছেড়ে দেয়ার পাত্র নন। তাই সে সময় অনেক বিজ্ঞানীই ইথার ধারণাটিকে বাঁচিয়ে রাখার জন্য নতুন নতুন হাইপোথিসিস বা, প্রকল্প নিয়ে এগিয়ে আসলেন। এ বিষয়ে জানার আগে আমরা একটু মাইকেলসন-মর্লির পরীক্ষাটি কিছুটা গাণিতিকভাবে বোঝার চেষ্টা করি চলুন।

Image result

মাইকেলসন-মর্লি তাদের পরীক্ষায় আলোর উৎস থেকে আসা আলোকে দুই ভাগ করে এক অংশকে পৃথিবীর গতির অভিমুখে এবং আরেক অংশকে পৃথিবীর গতির সাথে সমকোণে পাঠিয়ে দিয়েছিলেন। ফলে মাইকেলসন মর্লি আশা করেছিলেন যে, আলোক রশ্মি দুটির বেগে পার্থক্য ধরা পড়বে। অর্থাৎ, আলোক রশ্মি দুটোর অর্ধরুপায়িত আয়না থেকে বিচ্ছেদ হয়ে যাওয়া বিন্দুতে আবার ফিরে আসার সময়ের মাঝে একটা পার্থক্য ধরা পড়ার কথা ছিল। গণিতের সাহায্যে এ পার্থক্য খুব সহজেই বের করে ফেলা যায়। চলুন চেষ্টা করে দেখি। কেউ চাইলে গণিতের এই অংশটি সরাসরি বাদ দিয়ে দিতে পারেন। তাতেও পরবর্তি বিষয়গুলো বুঝতে এতটুকুও সমস্যা হবার কথা নয়।

*গণিতের শুরু*

প্রথমেই আমরা দেখবো একটা অর্ধরুপায়িত আয়না থেকে আলোক রশ্মি যখন দুইভাগ হয়ে যায় তখন পৃথিবীর গতির অভিমুখে যাওয়া আলোকরশ্মিটির “ L ” দূরত্বে থাকা আয়নাটিতে ধাক্কা খেয়ে আবার অর্ধরুপায়িত আয়নায় ফেরত আসতে কত সময় লাগে।

আমরা ধরে নেই আলোর বেগ “ c ” এবং পৃথিবীর বেগ “ v ”।

এখন, আমরা জানি, বেগ= দূরত্ব/সময়। তাহলে সময়=কত? হ্যাঁ, সময়= দূরত্ব/বেগ।

তাহলে আলোটি যখন পৃথিবীর অভিমুখে সামনে যায় তখন তার বেগ হয় (আলোর বেগ + পৃথিবীর বেগ) এর সমান। মানে (c+v) । আবার আয়নায় ধাক্কা খেয়ে আলো যখন পৃথিবীর বেগের বিপরীত দিকে আসতে থাকে তখন তার বেগ হয় (আলোর বেগ – পৃথিবীর বেগ) অর্থাৎ, (c-v)।

প্রতিফলক আয়না থেকে অর্ধরুপায়িত আয়নার দূরত্ব কিন্তু সবসময়ই সমান। আর তা হল “ L ”। তাহলে আলোক রশ্মিটি পৃথিবীর বেগের অভিমুখে সামনে যায় তখন সামনের আয়নায় পৌঁছাতে এর কত সময় লেগেছে? হ্যাঁ, সময়= দূরত্ব/বেগ এই সমীকরণ আমরা এখানে ব্যবহার করতে পারি। এই সময়কে যদি  ধরি তাহলে,

এখন, আলোর পৃথিবীর বেগের বিপরীতে ফিরে আসার সময়কে  যদি ধরি তাহলে,

তাহলে আলোর একবার সামনের আয়নায় যেয়ে আবার অর্ধরুপায়িত আয়নায় ফিরে আসার মোট সময়,

অর্থাৎ,

                                                                                                                                        ……………………………………………………(1)

 

আরেকটি আলোক রশ্মিকে পৃথিবীর বেগের অভিমুখের সমকোণে পাঠানো হয়েছিলো। সেই আলোক রশ্মির সামনের আয়নায় যাওয়া এবং ফিরে আসার মোট সময় এবার বের করে ফেলা যাক। এক্ষেত্রে আলোকে সমকোণে পাঠানো হলে তা পৃথিবীর বেগের কারণে ভেক্টরের নিয়মানুসারে সোজা না যেয়ে নিচের ছবিটির (b) অপশানের মত একটু বেঁকে যাবে।

এভাবে গেলেই আলোকরশ্মিটি আয়নাতে আঘাত করে আবার অর্ধরুপায়িত আয়নায় ফেরত আসতে পারবে। (a) অপশানের মতো একদম সোজা গেলে কিন্তু পৃথিবীর বেগের কারণে সামনের আয়নাটি কিছুটা সাইডে বা, পার্শ্বে সরে যাবে এবং আলোক রশ্মি আয়নায় ধাক্কা না খেয়ে বরং সোজা চলে যাবে! আলোক রশ্মিটি এভাবে না বেঁকে একদম সোজা তখনই যেতে পারবে যখন পৃথিবী স্থির থাকবে। অর্থাৎ, সেক্ষেত্রে যাওয়া এবং ফিরে আসার সময় হতো,

কিন্তু পরীক্ষার সময় বিজ্ঞানীরা জানতেন যে, আলোর বেগের ওপড় পৃথিবীর বেগের প্রভাব আছে। কিন্তু তারপরও নোবেল বিজয়ী বিজ্ঞানী মাইকেলসন সমকোণে পাঠানো আলোর ক্ষেত্রে এই ভুল হিসাবটিই করে ফেলেন। তিনি এই হিসাবের উপড় ভিত্তি করে পরীক্ষাটি করেছিলেন ১৮৮১ সালে। পরবর্তিতে ১৮৮২ সালে আলফ্রেড পটিয়ের এবং ১৮৮৬ সালে লরেন্টজ বিষয়টি ঠিক করে দেন। ১৮৮৭ সালে আবার বিশুদ্ধ ভাবে এই পরীক্ষাটি করেও মাইকেলসন আলোর বেগের কোন তারতম্য ধরতে পারেন নি।

এখন যদি আলো পৃথিবীর বেগের কারণে ছবির (b) অপশানের মতো বেঁকে যায় তাহলে আলোক রশ্মিটিকে কিছুটা বেশি দূরত্ব অতিক্রম করতে হবে আগের “L” দূরত্বের চেয়ে। ধরি এই দূরত্ব “L*”। L* দূরত্ব আলো অতিক্রম করে “t” সময়ে। সুতরাং, L*=c t । এই সময়ে অর্ধরুপায়িত আয়নাটি v বেগে অর্থাৎ, পৃথিবীর বেগে সামনে এগিয়ে গিয়েছে। অর্থাৎ, অর্ধরুপায়িত আয়নাটির t সময়ে অতিক্রান্ত দূরত্ব “vt” . তাহলে পীথাগোরাসের সূত্র অনুসারে,

বা,

বা,

বা,

আমরা যদি উপড়ের ছবির (b) অপশানটির দিকে তাকায় তবে দেখবো এতক্ষণ আমরা এর অর্ধেক অংশ নিয়ে কাজ করলাম। আলোক রশ্মিটি আবার একইভাবে (পদার্থবিজ্ঞানের ভাষায় এখানে এক ধরণের সিমেট্রি তৈরি হয়েছে) ফিরে আসবে। অর্থাৎ, উপড়ে আমরা যে অর্ধেক পথের সময় বের করলাম তাকে ২ দ্বারা গুন করে দিলেই আমরা সমকোণে পাঠানো আলোক রশ্মিটির দুইভাগ হয়ে যাওয়ার পর আবার অর্ধরুপায়িত আয়নায় ফিরে আসতে কত সময় লাগবে তা বের করে ফেলতে পারবো। তাহলে, সমকোণে পাঠানো আলোর জন্য মোট সময়,

                                                                                                                                                         …………………………………….(2)

 

এই চিত্রের লাল আলোকরশ্মিটি পৃথিবীর বেগের সাথে সমকোণে পাঠানো আলোক রশ্মি, আর নীল আলোকরশ্মিটি পৃথিবীর অভিমুখে পাঠানো আলোক রশ্মি।

*গণিত শেষ*

উপড়ের পুরো গাণিতিক অংশের কিছু না দেখলেও শুধু (১) এবং (২) নং সমীকরণটি আমাদের লাগবে। আমরা এই ১ নম্বর এবং ২ নম্বর একুয়েশান ২ টি ভালো করে লক্ষ্য করি। দুই জায়গাতেই   এসেছে যার পুরোটাই একটা ধ্রুবক। (২) নং সমীকরণে আমরা ফ্যাক্টর হিসেবে পেয়েছি  কে। এবং (১) নং সমীকরণে আমরা ফ্যাক্টর হিসেবে পেয়েছি (২) নং সমীকরণের ফ্যাক্টরের স্কয়ার বা, বর্গ     কে।

এই যে, (২) নং সমীকরণের   ফ্যাক্টরটি, এই ফ্যাক্টরটিকেই বলা হয় লরেন্টজ ফ্যাক্টর। একে গ্রীক অক্ষর গামা  দ্বারা প্রকাশ করা হয়। মাইকেলসন-মর্লি যখন ইথারের অস্তিত্ব প্রমাণে ব্যার্থ হলেন তখন এই ফ্যাক্টরটি কোঅর্ডিনেট ট্রান্সফর্মেশানের জন্য ১৮৮৭ সালে প্রথম ব্যবহার করেন জার্মান পদার্থবিদ উলডেমার ভয়েগট ( Woldemar Voigt )।

Image result for Woldemar Voigt lorentz
উলডেমার ভয়েগট

লরেন্টজ প্রথম এটি ব্যবহার করেন ১৮৯৫ সালে। কিন্তু তিনি উলডেমার ভোগেটের কাছ থেকে কোন রকম ধারণা ধার করেননি। তার কোঅর্ডিনেট ট্রান্সফর্মেশান অনেকটাই অন্যরকম ছিল। এরপর লার্মর, লরেন্টজ এবং পয়েন্ট কেয়ার মিলে লরেন্টেজের ট্রান্সফর্মেশানকে পরিপূর্ণতা দান করেছিলেন।

Image result for lorentz
স্যার হেন্ডরিক লরেন্টজ

অন্য দিকে জর্জ ফ্রান্সিস ফিটজগেরাল্ড পৃথিবীর ইতিহাসে প্রথম দৈর্ঘ্য সঙ্কোচনের কথা বললেন। তিনি বললেন, পৃথিবীর যখন ইথারের ভেতর দিয়ে যায় তখন মাইকেলসন-মর্লি যে যন্ত্রগুলোর দ্বারা আলোর বেগ মাপার চেষ্টা করছিলো সেগুলো আসলে ছোট বা, সঙ্কুচিত হয়ে যায়। মনে রাখতে হবে তিনি পদার্থের নিজেদের অণু-পরমাণুর সঙ্কোচনের কথা বলেছিলেন। স্পেস-টাইম বা, স্থান-কালের সঙ্কোচনের কথা বলেন নি। লরেন্টজ ফিটজগেরাল্ডের এই ধারণাটি গ্রহণ করলেন এবং দৈর্ঘ্য সঙ্কোচনের জন্য একটি ফ্যাক্টর বের করলেন যা,  ।

Image result for fitzgerald contraction

লরেন্টজ এবং ফিটজগেরাল্ড এ দুজন মিলে ইথারকে বাঁচানোর জন্য দাঁড়া করালেন “ফিটজগেরাল্ড-লরেন্টজ সঙ্কোচন প্রকল্প”। এ প্রকল্প অনুসারে কোন পদার্থ ইথারের বেগ বরাবর সঙ্কুচিত হয়। পদার্থটির দৈর্ঘ্য যদি হয়, “L”, তবে তার পরিবর্তিত দৈর্ঘ্য হবে, zrdxcfbhnjk। লরেন্টজ আর ফিটজগেরাল্ডের এ প্রকল্প বেশ সাড়া ফেলে দেয়। কারণ এটি ব্যবহার করে তারা মাইকেলসন-মর্লির পরীক্ষার ব্যাখ্যা দিতে সক্ষম হলেন। কিভাবে? আচ্ছা চলুন দেখা যাক।

মাইকেলসন-মর্লির পরীক্ষায় আলোক রশ্মিদুটোর অর্ধরুপায়িত আয়নায় ফিরে আসতে সমান সময় লেগেছিল। অর্থাৎ, (১) এবং (২) নং সমীকরণের tfuvybunjk একই ছিল। এখন লরেন্টজ-ফিটজগেরাল্ড হাইপোথিসিস অনুসারে পৃথিবীর বেগ বরাবর বা, আপেক্ষিকভাবে বললে ইথারের বেগ বরাবর যে আলোক রশ্মিটি পাঠানো হয়েছিল সে বরাবর সব কিছুর দৈর্ঘ্য সঙ্কোচন ঘটবে। আগে এ দৈর্ঘ্য ছিল “L”। কিন্তু এখন হয়ে যাবে wzrexnui । দৈর্ঘ্যের এ মানটি  (১) নং সমীকরণে বসালে আমরা পাই,

এই “  ” হলো (২) নং সমীকরণে সমকোণে পাঠানো আলোর ফিরে আসার সময়। সুতরাং, (১) নং সমীকরণে লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প ব্যবহার করে আমরা যে সময় পেলাম তা (২) নং সমীকরণের সময়ের সমান। সুতরাং, লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প সঠিক হলে, আলোকে পৃথিবীর অভিমুখে বা, সমকোণে যে পথেই পাঠানো হোক না কেন তার অর্ধরুপায়িত আয়নায় ফিরে আসতে সমান সময় লাগার কথা। এ ঘটনাটিই মাইকেলসন-মর্লির পরীক্ষায় দেখা গেছে। অর্থাৎ, শেষ পর্যন্ত তাদের পরীক্ষার একটা ব্যাখ্যা দাঁড় করানো সম্ভব হলো। সেটাও কাল্পনিক ইথার এবং পদার্থের দৈর্ঘ্য সঙ্কোচনের মত ধারণার বিনিময়ে।

লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প মোটামুটি সঠিক পথেই ছিল, কিন্তু সমস্যা ছিল তাদের স্বীকার্য বা, অনেকটা জোর করে ধরে নেয়া বিষয়গুলোতে যা সন্তোষজনকভাবে ব্যাখ্যা এবং সমাধান করেছিলেন স্যার আলবার্ট আইনস্টাইন। আইনস্টাইনের সেই যুগান্তকারী ধারণাগুলো আমাদের বিশ্ব জগৎকে দেখার দৃষ্টিভংগিই পাল্টিয়ে দিয়েছিলো। আইনস্টাইনের সেই যুগান্তকারী স্পেশাল থিওরি অফ রিলেটিভিটির কথা আমরা না হয় জানবো অন্য কোন লেখায়। আজ এ পর্যন্তই। ধন্যবাদ।

আইনস্টাইনের আয়না এবং স্পেশাল রিলেটিভিটির দুইটি স্বীকার্য

স্যার আলবার্ট আইনস্টাইন। সম্ভবত পৃথিবীর ইতিহাসের সবচেয়ে বিখ্যাত পদার্থবিজ্ঞানী। সবচেয়ে আলোচিত এবং মেধাবীও বলা চলে। বিজ্ঞানী মাইকেলসন আর মর্লি আলোর বেগের আপেক্ষিকতার পরীক্ষা করেছিলেন পরীক্ষাগারের, যন্ত্র পাতির সাহায্য নিয়ে। আর কিশোর আইনস্টাইন সেটা করেছিলেন তার মাথার পরীক্ষাগারে, একটি ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে। আজ আমরা সেই পরীক্ষার কথায় জানবো। তার সাথে সাথে জানবো এই থট এক্সপেরিমেন্ট থেকে কিভাবে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে যাই।

Image result for albert einstein wallpaper

তখন ১৮৯৬ সাল। আইনস্টাইনের বয়স কেবল ষোল। আইনস্টাইন তখনও মাইকেলসন আর মর্লির ইথারের পরীক্ষার বিষয়ে একদমই জানতেন না। ইথারের অস্তিত্ব যে কিছুটা সন্দেহের মুখে পড়ে গেছে তা না জেনেই আইনস্টাইন তার জীবন্ত পরীক্ষাগার, নিজের মাথায় একটি থট এক্সপেরিমেন্ট চালালেন। আইনস্টাইন নিজেই নিজেকে প্রশ্ন করলেন, “কি ঘটবে যদি আমি এখন আমার দুই হাতে একটি আয়না ধরে আলোর বেগে দৌড়াতে শুরু করি। আমি নিজে কি নিজের প্রতিচ্ছবি সেই আয়নায় দেখতে পাবো?” বলে রাখা ভাল যে, গ্যালিলিয়ান আপেক্ষিকতায় শুধু আলোর বেগ কেন, আলোর চেয়ে বেশি বেগে যাওয়ার বিষয়েও কোন রকম বিধি নিষেধ ছিল না।

বিজ্ঞানীরা আরো আগে থেকেই জানতেন যে, আলোর বেগ ৩,০০,০০ কি.মি./সেকেন্ড। কিন্তু কার সাপেক্ষে আলোর এই বেগ? এ প্রশ্নের উত্তর দেয়ার জন্য তারা ইথারের ধারণার অবতারণা করেছিলেন। অর্থাৎ, আইনস্টাইন যখন আলোর বেগে আয়না নিয়ে দৌড় দেবেন তখন আলো ইথার মাধ্যমে ৩,০০,০০০ কি.মি./সেকেন্ড বেগে আইনস্টাইনের মুখমন্ডল থেকে আইনস্টাইনের হাতে ধরে রাখা আয়নাটির দিকে যাওয়ার চেষ্টা করবে। আইনস্টাইন নিজেও আলোর বেগে সামনে এগিয়ে যাচ্ছেন। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতা অনুসারে আলো আর আইনস্টাইনের বেগ সমান বলে আলো কখনই আইনস্টাইনের মুখমন্ডল থেকে আয়নায় পৌঁছাতে পারবে না।

এ পর্যন্ত বুঝতে কারো সমস্যা হওয়ার কথা নয়। এবার আমরা মনে করি দেখি যে, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্যটিতে কি বলা হয়েছিল। এই স্বীকার্য আমাদের বলেছিল যে, “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়”। যার অর্থ আমরা যদি একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি বস্তু বিবেচনা করি তাহলে আমরা কোনভাবেই বলতে পারব না যে কে গতিশীল আছে আর কে স্থির আছে।

চলুন, এখন আবার আইনস্টাইনের থট এক্সপেরিমেন্টে ফিরে যাই। আইনস্টাইনের থট এক্সপেরিমেন্ট থেকে এই বিষয়টি নিশ্চিত যে, আলোর বেগে আয়না নিয়ে দৌড়ালে আসলে আমাদের প্রতিবিম্ব আয়নাতে আমরা দেখতে পারবো না। ফলে নিজেদের মুখ আমরা আয়নায় দেখতে পাবো না। তাহলে কি দাঁড়ালো? একজন যদি আলোর বেগে আয়না নিয়ে দৌড় দেয় এবং আয়নায় দেখে নিজের প্রতিবিম্ব সেখানে পরছে না তখনই সে নিশ্চিতভাবে বলতে পারবে যে, সে আসলেই আলোর বেগে গতিশীল আছে। কিন্তু গ্যালিলিওর আপেক্ষিকতার স্বীকার্য আমাদের বলেছিল কোন একটি পরীক্ষা স্থির অবস্থায়ই করা হোক বা, সমবেগে গতিশীল থাকা অবস্থায়ই করা হোক না কেন একই ফলাফল দেবে। কিন্তু এই থট এক্সপেরিমেন্টে এই স্বীকার্যটি তো ভুল প্রমাণ হয়ে গেল!! তাহলে?

Image result for looking in mirror

আইনস্টাইন তার এই থট এক্সপেরিমেন্টে ইথার ধারণাটিকে প্রথমে সত্য বলে ধরে নিয়েছিলেন। অর্থাৎ, আলোর বেগ শুধু ইথারের সাপেক্ষেই সর্বদা ধ্রুব বা, ৩,০০,০০০ কি.মি./সেকেন্ড থাকে। অর্থাৎ, ইথার ধারণা সঠিক হলে গ্যালিলিওর প্রথম স্বীকার্যটি ভুল হয়ে যায়।

যদি গ্যালিলিওর প্রথম স্বীকার্যকে সত্য হতে হয় তাহলে নিজের প্রতিবিম্ব আয়নায় দেখা যেতে হবে স্বাভাবিকভাবেই। আর সেটা তখনই সম্ভব হবে যখন আলোর বেগ সকল কিছুর সাপেক্ষেই ধ্রুব বা, একই হবে। তাহলে আইনস্টাইন যদি আলোর বেগেও যান তাহলেও আলো তার সাপেক্ষে আলোর বেগেই চলবে। ফলে আলো স্বাভাবিকভাবেই আয়নায় পৌঁছাবে আর আইনস্টাইন তার মুখমন্ডল দেখতে পাবেন।

বিষয়টা আরেকটু পরিষ্কারভাবে বলা যাক। ধরি, আইনস্টাইন একটি আয়না নিয়ে স্থির দাঁড়িয়ে আছেন। তাহলে তিনি যদি এখন তার ডান হাতটি হালকা নাড়ান তবে খুব কম সময়ের মাঝে সামনের আয়নাতে তিনি তার ডান হাত নাড়ানোটি দেখতে পাবেন। এখন যদি তিনি আলোর কাছাকাছি বেগে আয়নাটি নিয়ে দৌড় দেন তবে গ্যালিলিয়ান আপেক্ষিকতা অনুসারে তার সাপেক্ষে আলোর বেগ কমে যাবে (যদি কোন গাড়ি ১০ মি./সেকেন্ড বেগে যায় আর আপনি ৫ মি./সেকেন্ড বেগে সেই একই দিকে দৌড়ান তাহলে আপনার কাছে মনে হবে গাড়ির বেগ কমে ৫ মি./সেকেন্ড হয়ে গিয়েছে। একই যুক্তিতে আলোর বেগের কাছাকাছি বেগে গেলে আপনার সাপেক্ষে আলোর বেগ কমে যাওয়ার কথা)। তাহলে ডান হাত নাড়ানোর অনেক পরে তিনি আয়নাতে তার হাত নাড়ানো দেখতে পাবেন। সময়ের এ পার্থক্য দিয়েও যে কেউ বলে ফেলতে পারবেন যে তিনি আসলে স্থির নয় বরং গতিশীল আছেন। অর্থাৎ, আপনি স্থির থাকলে আলোর বেগ আপনার কাছে যত হবে আপনি যদি আলোর কাছাকাছি বেগেও দৌড়ানো শুরু করেন তবেও আলোর বেগ আপনার সাপেক্ষে ৩,০০,০০ কি.মি./সেকেন্ডই থাকতে হবে। তবেই শুধুমাত্র গ্যালিলিওর প্রথম স্বীকার্যটিকে বাঁচানো সম্ভব হবে। আর এটি সত্য হলে আলোর বেগের ওপড় ইথারের আর কোন প্রভাব থাকে না। সুতরাং ইথার ধারণাটিও অপ্রয়োজনীয় হয়ে যায়।

অর্থাৎ, গ্যালিলিওর প্রথম স্বীকার্য এবং ইথার ধারণা এ দুটোই একই সাথে সত্য হতে পারেনা। এদের যেকোন একটাকে মিথ্যা হতেই হবে। এর আগেই মাইকেলসন-মর্লির এক্সপেরিমেন্ট থেকে আমরা দেখেছি ইথারের অস্তিত্ব প্রমাণ করা সম্ভব হয় নি। আইনস্টাইনও দেখলেন আলোর বেগকে যদি সব কিছুর সাপেক্ষে সর্বদা একই ধরে নেয়া হয় তাহলে ইথারের আর প্রয়োজন পড়ে না। এভাবেই ইথার ধারণাটি আইনস্টাইন বাতিল করে দিলেন আর গ্যালিলিওর প্রথম স্বীকার্যটিকেই নিজের স্পেশাল থিওরি অভ রিলেটিভিটিরও প্রথম স্বীকার্য বানিয়ে নিলেন। আর দ্বিতীয় স্বীকার্যতে বললেন, আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব যা আমরা উপড়ের থট এক্সপেরিমেন্ট থেকে দেখলাম।

আলোর বেগ সব কিছুর সাপেক্ষেই সর্বদা ধ্রুব এই কথাটি মেনে নিতে অনেকেরই প্রথম প্রথম অনেক কষ্ট হয়। তাই বিষয়টি আরেকটু ব্যাখ্যা করা যাক। ধরুন, পৃথিবীর মানুষ আর এলিয়েনদের মাঝে একটি যুদ্ধ শুরু হয়ে গিয়েছে। আপনি একটি স্পেস শিপ নিয়ে মহাকাশে গেলেন। একজন এলিয়েনও তাদের স্পেস শিপ নিয়ে মহাকাশে চলে গেলো। দুজনের স্পেস শিপেই কিন্তু হেডলাইটের মতো লাইট জ্বলার ব্যবস্থা আছে। হঠাৎ জ্বালানি শেষ হয়ে যাওয়াই আপনি আপনার স্পেস শিপটি নিয়ে স্থির দাঁড়িয়ে আছেন। তখনই এলিয়েন স্পেস শিপটি ২,০০,০০০ কি.মি./সেকেন্ড বেগে আপনার দিকে ছুঁটে আসল। আর আসতে আসতে ১০ কি.মি./সেকেন্ড বেগে গুলি ছুঁড়তে পারে এমন একটি বন্দুক থেকে আপনার দিকে গুলি ছুঁড়তে লাগলো। তাহলে আপনি গুলিগুলোর বেগ কত দেখবেন? নিশ্চয় উত্তর দেবেন যে, আপনি দেখবেন গুলিগুলো ২,০০,০১০ কি.মি./সেকেন্ড বেগে আপনার দিকে ধেয়ে আসছে। কারণ গ্যালিলিয়ান আপেক্ষিকতা বলে যে, গুলির বেগের সাথে স্পেস শিপের বেগ যোগ হয়ে যাবে। এখন স্পেস শিপটি যদি হঠাৎ করে তার তার হেড লাইটটি জ্বালিয়ে দেয় তাহলে কি দেখবেন? আলোর বেগ কত হবে? স্পেস শিপের বেগ + আলোর বেগ? মানে ৫,০০,০০০ কি.মি./সেকেন্ড? গ্যালিলিয়ান আপেক্ষিকতা তো তাই বলে। কিন্তু আইনস্টাইন বললেন, না। তখনও আপনি দেখবেন আলোর বেগ শুধু আলোর বেগের সমানই। মানে সর্বদাই ৩,০০,০০০ কি.মি./সেকেন্ড। এক ফোঁটা কমও নয় আবার এক ফোঁটা বেশিও নয়। এটাই আইনস্টাইনের দ্বিতীয় স্বীকার্য। এটাই সত্য!

আলোর বেগ যেভাবেই মাপা হোক না কেন তা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যায়। এ কারণেই মাইকেলসন-মর্লি যখন তাদের পরীক্ষাটি করেন তখন তাদের পরীক্ষায় সোজা পাঠানো আলো আর সমকোণে পাঠানো আলোর বেগের মাঝে কোন পার্থক্য ধরা পড়েছিলো না। পরবর্তিতেও অনেক পরীক্ষার মাধ্যমে প্রমাণিত হয়েছে যে আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে।

অর্থাৎ, দেখা গেলো আইনস্টাইনের এই ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে গেলাম। এ দুটি স্বীকার্যের উপড় ভিত্তি করেই দাঁড়িয়ে আছে আইনস্টাইনের বিশেষ আপেক্ষিকতার তত্ত্ব। তাই চলুন এ স্বীকার্য দুটি আরেকবার সুন্দর করে আমরা লিখে ফেলি। আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি হলঃ

১। “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়” (গ্যালিলিওর প্রথম স্বীকার্যের অনুরুপ)

২। আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে। আলোর বেগ যেভাবেই মাপা হোক না কেন তা সর্বদা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যাবে।

এ দুটি স্বীকার্যের উপড় ভিত্তি করে আমরা কাল দীর্ঘায়ন সম্বন্ধেও বুঝতে পারি। গ্যালিলিয়ান আপেক্ষিকতার দ্বিতীয় স্বীকার্য, যেখানে সময়কে পরম হিসেবে ধরা হয়েছিল তা যে ভুল তা আমরা আইনস্টাইনের উপড়ের দুটি স্বীকার্য থেকে পাই। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্য ঠিক হলেও দ্বিতীয় স্বীকার্যে পরম সময়ের বদলে পরম আলোর বেগ ব্যবহার করলেন আইনস্টাইন। এছাড়াও আমরা দৈর্ঘ্য সঙ্কোচন, ভর বা, ভরের আপেক্ষিকতা এবং ভর আর শক্তি যে একই জিনিস এমন অনেক কিছু আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটি থেকে পরবর্তিতে জানতে এবং বুঝতে পারি। এ বিষয়গুলো নিয়ে পরবর্তি কোন এক লেখায় কথা বলা যাবে। আজ এ পর্যন্তই। কষ্ট করে এতদূর পড়ার জন্য সকলকে ধন্যবাদ।

ইথারকে বাঁচাতে ফিটজগেরাল্ড-লরেন্টজের হাইপোথিসিস

ইতিহাসে ১৮৮৭ সালে মাইকেলসন-মর্লির ইথারের বিখ্যাত পরীক্ষাটিই ইথার ধারণাকে একরকম প্রায় বাতিলই করে দিয়েছিল। কিন্তু বিজ্ঞানীরা তো আর এত সহজে হাল ছেড়ে দেয়ার পাত্র নন। তাই সে সময় অনেক বিজ্ঞানীই ইথার ধারণাটিকে বাঁচিয়ে রাখার জন্য নতুন নতুন হাইপোথিসিস বা, প্রকল্প নিয়ে এগিয়ে আসলেন। এ বিষয়ে জানার আগে আমরা একটু মাইকেলসন-মর্লির পরীক্ষাটি কিছুটা গাণিতিকভাবে বোঝার চেষ্টা করি চলুন।

Image result

মাইকেলসন-মর্লি তাদের পরীক্ষায় আলোর উৎস থেকে আসা আলোকে দুই ভাগ করে এক অংশকে পৃথিবীর গতির অভিমুখে এবং আরেক অংশকে পৃথিবীর গতির সাথে সমকোণে পাঠিয়ে দিয়েছিলেন। ফলে মাইকেলসন মর্লি আশা করেছিলেন যে, আলোক রশ্মি দুটির বেগে পার্থক্য ধরা পড়বে। অর্থাৎ, আলোক রশ্মি দুটোর অর্ধরুপায়িত আয়না থেকে বিচ্ছেদ হয়ে যাওয়া বিন্দুতে আবার ফিরে আসার সময়ের মাঝে একটা পার্থক্য ধরা পড়ার কথা ছিল। গণিতের সাহায্যে এ পার্থক্য খুব সহজেই বের করে ফেলা যায়। চলুন চেষ্টা করে দেখি। কেউ চাইলে গণিতের এই অংশটি সরাসরি বাদ দিয়ে দিতে পারেন। তাতেও পরবর্তি বিষয়গুলো বুঝতে এতটুকুও সমস্যা হবার কথা নয়।

*গণিতের শুরু*

প্রথমেই আমরা দেখবো একটা অর্ধরুপায়িত আয়না থেকে আলোক রশ্মি যখন দুইভাগ হয়ে যায় তখন পৃথিবীর গতির অভিমুখে যাওয়া আলোকরশ্মিটির “ L ” দূরত্বে থাকা আয়নাটিতে ধাক্কা খেয়ে আবার অর্ধরুপায়িত আয়নায় ফেরত আসতে কত সময় লাগে।

আমরা ধরে নেই আলোর বেগ “ c ” এবং পৃথিবীর বেগ “ v ”।

এখন, আমরা জানি, বেগ= দূরত্ব/সময়। তাহলে সময়=কত? হ্যাঁ, সময়= দূরত্ব/বেগ।

তাহলে আলোটি যখন পৃথিবীর অভিমুখে সামনে যায় তখন তার বেগ হয় (আলোর বেগ + পৃথিবীর বেগ) এর সমান। মানে (c+v) । আবার আয়নায় ধাক্কা খেয়ে আলো যখন পৃথিবীর বেগের বিপরীত দিকে আসতে থাকে তখন তার বেগ হয় (আলোর বেগ – পৃথিবীর বেগ) অর্থাৎ, (c-v)।

প্রতিফলক আয়না থেকে অর্ধরুপায়িত আয়নার দূরত্ব কিন্তু সবসময়ই সমান। আর তা হল “ L ”। তাহলে আলোক রশ্মিটি পৃথিবীর বেগের অভিমুখে সামনে যায় তখন সামনের আয়নায় পৌঁছাতে এর কত সময় লেগেছে? হ্যাঁ, সময়= দূরত্ব/বেগ এই সমীকরণ আমরা এখানে ব্যবহার করতে পারি। এই সময়কে যদি  ধরি তাহলে,

এখন, আলোর পৃথিবীর বেগের বিপরীতে ফিরে আসার সময়কে  যদি ধরি তাহলে,

তাহলে আলোর একবার সামনের আয়নায় যেয়ে আবার অর্ধরুপায়িত আয়নায় ফিরে আসার মোট সময়,

অর্থাৎ,

                                                                                                                                        ……………………………………………………(1)

 

আরেকটি আলোক রশ্মিকে পৃথিবীর বেগের অভিমুখের সমকোণে পাঠানো হয়েছিলো। সেই আলোক রশ্মির সামনের আয়নায় যাওয়া এবং ফিরে আসার মোট সময় এবার বের করে ফেলা যাক। এক্ষেত্রে আলোকে সমকোণে পাঠানো হলে তা পৃথিবীর বেগের কারণে ভেক্টরের নিয়মানুসারে সোজা না যেয়ে নিচের ছবিটির (b) অপশানের মত একটু বেঁকে যাবে।

এভাবে গেলেই আলোকরশ্মিটি আয়নাতে আঘাত করে আবার অর্ধরুপায়িত আয়নায় ফেরত আসতে পারবে। (a) অপশানের মতো একদম সোজা গেলে কিন্তু পৃথিবীর বেগের কারণে সামনের আয়নাটি কিছুটা সাইডে বা, পার্শ্বে সরে যাবে এবং আলোক রশ্মি আয়নায় ধাক্কা না খেয়ে বরং সোজা চলে যাবে! আলোক রশ্মিটি এভাবে না বেঁকে একদম সোজা তখনই যেতে পারবে যখন পৃথিবী স্থির থাকবে। অর্থাৎ, সেক্ষেত্রে যাওয়া এবং ফিরে আসার সময় হতো,

কিন্তু পরীক্ষার সময় বিজ্ঞানীরা জানতেন যে, আলোর বেগের ওপড় পৃথিবীর বেগের প্রভাব আছে। কিন্তু তারপরও নোবেল বিজয়ী বিজ্ঞানী মাইকেলসন সমকোণে পাঠানো আলোর ক্ষেত্রে এই ভুল হিসাবটিই করে ফেলেন। তিনি এই হিসাবের উপড় ভিত্তি করে পরীক্ষাটি করেছিলেন ১৮৮১ সালে। পরবর্তিতে ১৮৮২ সালে আলফ্রেড পটিয়ের এবং ১৮৮৬ সালে লরেন্টজ বিষয়টি ঠিক করে দেন। ১৮৮৭ সালে আবার বিশুদ্ধ ভাবে এই পরীক্ষাটি করেও মাইকেলসন আলোর বেগের কোন তারতম্য ধরতে পারেন নি।

এখন যদি আলো পৃথিবীর বেগের কারণে ছবির (b) অপশানের মতো বেঁকে যায় তাহলে আলোক রশ্মিটিকে কিছুটা বেশি দূরত্ব অতিক্রম করতে হবে আগের “L” দূরত্বের চেয়ে। ধরি এই দূরত্ব “L*”। L* দূরত্ব আলো অতিক্রম করে “t” সময়ে। সুতরাং, L*=c t । এই সময়ে অর্ধরুপায়িত আয়নাটি v বেগে অর্থাৎ, পৃথিবীর বেগে সামনে এগিয়ে গিয়েছে। অর্থাৎ, অর্ধরুপায়িত আয়নাটির t সময়ে অতিক্রান্ত দূরত্ব “vt” . তাহলে পীথাগোরাসের সূত্র অনুসারে,

বা,

বা,

বা,

আমরা যদি উপড়ের ছবির (b) অপশানটির দিকে তাকায় তবে দেখবো এতক্ষণ আমরা এর অর্ধেক অংশ নিয়ে কাজ করলাম। আলোক রশ্মিটি আবার একইভাবে (পদার্থবিজ্ঞানের ভাষায় এখানে এক ধরণের সিমেট্রি তৈরি হয়েছে) ফিরে আসবে। অর্থাৎ, উপড়ে আমরা যে অর্ধেক পথের সময় বের করলাম তাকে ২ দ্বারা গুন করে দিলেই আমরা সমকোণে পাঠানো আলোক রশ্মিটির দুইভাগ হয়ে যাওয়ার পর আবার অর্ধরুপায়িত আয়নায় ফিরে আসতে কত সময় লাগবে তা বের করে ফেলতে পারবো। তাহলে, সমকোণে পাঠানো আলোর জন্য মোট সময়,

                                                                                                                                                         …………………………………….(2)

 

এই চিত্রের লাল আলোকরশ্মিটি পৃথিবীর বেগের সাথে সমকোণে পাঠানো আলোক রশ্মি, আর নীল আলোকরশ্মিটি পৃথিবীর অভিমুখে পাঠানো আলোক রশ্মি।

*গণিত শেষ*

উপড়ের পুরো গাণিতিক অংশের কিছু না দেখলেও শুধু (১) এবং (২) নং সমীকরণটি আমাদের লাগবে। আমরা এই ১ নম্বর এবং ২ নম্বর একুয়েশান ২ টি ভালো করে লক্ষ্য করি। দুই জায়গাতেই   এসেছে যার পুরোটাই একটা ধ্রুবক। (২) নং সমীকরণে আমরা ফ্যাক্টর হিসেবে পেয়েছি  কে। এবং (১) নং সমীকরণে আমরা ফ্যাক্টর হিসেবে পেয়েছি (২) নং সমীকরণের ফ্যাক্টরের স্কয়ার বা, বর্গ     কে।

এই যে, (২) নং সমীকরণের   ফ্যাক্টরটি, এই ফ্যাক্টরটিকেই বলা হয় লরেন্টজ ফ্যাক্টর। একে গ্রীক অক্ষর গামা  দ্বারা প্রকাশ করা হয়। মাইকেলসন-মর্লি যখন ইথারের অস্তিত্ব প্রমাণে ব্যার্থ হলেন তখন এই ফ্যাক্টরটি কোঅর্ডিনেট ট্রান্সফর্মেশানের জন্য ১৮৮৭ সালে প্রথম ব্যবহার করেন জার্মান পদার্থবিদ উলডেমার ভয়েগট ( Woldemar Voigt )।

Image result for Woldemar Voigt lorentz
উলডেমার ভয়েগট

লরেন্টজ প্রথম এটি ব্যবহার করেন ১৮৯৫ সালে। কিন্তু তিনি উলডেমার ভোগেটের কাছ থেকে কোন রকম ধারণা ধার করেননি। তার কোঅর্ডিনেট ট্রান্সফর্মেশান অনেকটাই অন্যরকম ছিল। এরপর লার্মর, লরেন্টজ এবং পয়েন্ট কেয়ার মিলে লরেন্টেজের ট্রান্সফর্মেশানকে পরিপূর্ণতা দান করেছিলেন।

Image result for lorentz
স্যার হেন্ডরিক লরেন্টজ

অন্য দিকে জর্জ ফ্রান্সিস ফিটজগেরাল্ড পৃথিবীর ইতিহাসে প্রথম দৈর্ঘ্য সঙ্কোচনের কথা বললেন। তিনি বললেন, পৃথিবীর যখন ইথারের ভেতর দিয়ে যায় তখন মাইকেলসন-মর্লি যে যন্ত্রগুলোর দ্বারা আলোর বেগ মাপার চেষ্টা করছিলো সেগুলো আসলে ছোট বা, সঙ্কুচিত হয়ে যায়। মনে রাখতে হবে তিনি পদার্থের নিজেদের অণু-পরমাণুর সঙ্কোচনের কথা বলেছিলেন। স্পেস-টাইম বা, স্থান-কালের সঙ্কোচনের কথা বলেন নি। লরেন্টজ ফিটজগেরাল্ডের এই ধারণাটি গ্রহণ করলেন এবং দৈর্ঘ্য সঙ্কোচনের জন্য একটি ফ্যাক্টর বের করলেন যা,  ।

Image result for fitzgerald contraction

লরেন্টজ এবং ফিটজগেরাল্ড এ দুজন মিলে ইথারকে বাঁচানোর জন্য দাঁড়া করালেন “ফিটজগেরাল্ড-লরেন্টজ সঙ্কোচন প্রকল্প”। এ প্রকল্প অনুসারে কোন পদার্থ ইথারের বেগ বরাবর সঙ্কুচিত হয়। পদার্থটির দৈর্ঘ্য যদি হয়, “L”, তবে তার পরিবর্তিত দৈর্ঘ্য হবে, zrdxcfbhnjk। লরেন্টজ আর ফিটজগেরাল্ডের এ প্রকল্প বেশ সাড়া ফেলে দেয়। কারণ এটি ব্যবহার করে তারা মাইকেলসন-মর্লির পরীক্ষার ব্যাখ্যা দিতে সক্ষম হলেন। কিভাবে? আচ্ছা চলুন দেখা যাক।

মাইকেলসন-মর্লির পরীক্ষায় আলোক রশ্মিদুটোর অর্ধরুপায়িত আয়নায় ফিরে আসতে সমান সময় লেগেছিল। অর্থাৎ, (১) এবং (২) নং সমীকরণের tfuvybunjk একই ছিল। এখন লরেন্টজ-ফিটজগেরাল্ড হাইপোথিসিস অনুসারে পৃথিবীর বেগ বরাবর বা, আপেক্ষিকভাবে বললে ইথারের বেগ বরাবর যে আলোক রশ্মিটি পাঠানো হয়েছিল সে বরাবর সব কিছুর দৈর্ঘ্য সঙ্কোচন ঘটবে। আগে এ দৈর্ঘ্য ছিল “L”। কিন্তু এখন হয়ে যাবে wzrexnui । দৈর্ঘ্যের এ মানটি  (১) নং সমীকরণে বসালে আমরা পাই,

এই “  ” হলো (২) নং সমীকরণে সমকোণে পাঠানো আলোর ফিরে আসার সময়। সুতরাং, (১) নং সমীকরণে লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প ব্যবহার করে আমরা যে সময় পেলাম তা (২) নং সমীকরণের সময়ের সমান। সুতরাং, লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প সঠিক হলে, আলোকে পৃথিবীর অভিমুখে বা, সমকোণে যে পথেই পাঠানো হোক না কেন তার অর্ধরুপায়িত আয়নায় ফিরে আসতে সমান সময় লাগার কথা। এ ঘটনাটিই মাইকেলসন-মর্লির পরীক্ষায় দেখা গেছে। অর্থাৎ, শেষ পর্যন্ত তাদের পরীক্ষার একটা ব্যাখ্যা দাঁড় করানো সম্ভব হলো। সেটাও কাল্পনিক ইথার এবং পদার্থের দৈর্ঘ্য সঙ্কোচনের মত ধারণার বিনিময়ে।

লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প মোটামুটি সঠিক পথেই ছিল, কিন্তু সমস্যা ছিল তাদের স্বীকার্য বা, অনেকটা জোর করে ধরে নেয়া বিষয়গুলোতে যা সন্তোষজনকভাবে ব্যাখ্যা এবং সমাধান করেছিলেন স্যার আলবার্ট আইনস্টাইন। আইনস্টাইনের সেই যুগান্তকারী ধারণাগুলো আমাদের বিশ্ব জগৎকে দেখার দৃষ্টিভংগিই পাল্টিয়ে দিয়েছিলো। আইনস্টাইনের সেই যুগান্তকারী স্পেশাল থিওরি অফ রিলেটিভিটির কথা আমরা না হয় জানবো অন্য কোন লেখায়। আজ এ পর্যন্তই। ধন্যবাদ।

আইনস্টাইনের আয়না এবং স্পেশাল রিলেটিভিটির দুইটি স্বীকার্য

স্যার আলবার্ট আইনস্টাইন। সম্ভবত পৃথিবীর ইতিহাসের সবচেয়ে বিখ্যাত পদার্থবিজ্ঞানী। সবচেয়ে আলোচিত এবং মেধাবীও বলা চলে। বিজ্ঞানী মাইকেলসন আর মর্লি আলোর বেগের আপেক্ষিকতার পরীক্ষা করেছিলেন পরীক্ষাগারের, যন্ত্র পাতির সাহায্য নিয়ে। আর কিশোর আইনস্টাইন সেটা করেছিলেন তার মাথার পরীক্ষাগারে, একটি ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে। আজ আমরা সেই পরীক্ষার কথায় জানবো। তার সাথে সাথে জানবো এই থট এক্সপেরিমেন্ট থেকে কিভাবে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে যাই।

Image result for albert einstein wallpaper

তখন ১৮৯৬ সাল। আইনস্টাইনের বয়স কেবল ষোল। আইনস্টাইন তখনও মাইকেলসন আর মর্লির ইথারের পরীক্ষার বিষয়ে একদমই জানতেন না। ইথারের অস্তিত্ব যে কিছুটা সন্দেহের মুখে পড়ে গেছে তা না জেনেই আইনস্টাইন তার জীবন্ত পরীক্ষাগার, নিজের মাথায় একটি থট এক্সপেরিমেন্ট চালালেন। আইনস্টাইন নিজেই নিজেকে প্রশ্ন করলেন, “কি ঘটবে যদি আমি এখন আমার দুই হাতে একটি আয়না ধরে আলোর বেগে দৌড়াতে শুরু করি। আমি নিজে কি নিজের প্রতিচ্ছবি সেই আয়নায় দেখতে পাবো?” বলে রাখা ভাল যে, গ্যালিলিয়ান আপেক্ষিকতায় শুধু আলোর বেগ কেন, আলোর চেয়ে বেশি বেগে যাওয়ার বিষয়েও কোন রকম বিধি নিষেধ ছিল না।

বিজ্ঞানীরা আরো আগে থেকেই জানতেন যে, আলোর বেগ ৩,০০,০০ কি.মি./সেকেন্ড। কিন্তু কার সাপেক্ষে আলোর এই বেগ? এ প্রশ্নের উত্তর দেয়ার জন্য তারা ইথারের ধারণার অবতারণা করেছিলেন। অর্থাৎ, আইনস্টাইন যখন আলোর বেগে আয়না নিয়ে দৌড় দেবেন তখন আলো ইথার মাধ্যমে ৩,০০,০০০ কি.মি./সেকেন্ড বেগে আইনস্টাইনের মুখমন্ডল থেকে আইনস্টাইনের হাতে ধরে রাখা আয়নাটির দিকে যাওয়ার চেষ্টা করবে। আইনস্টাইন নিজেও আলোর বেগে সামনে এগিয়ে যাচ্ছেন। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতা অনুসারে আলো আর আইনস্টাইনের বেগ সমান বলে আলো কখনই আইনস্টাইনের মুখমন্ডল থেকে আয়নায় পৌঁছাতে পারবে না।

এ পর্যন্ত বুঝতে কারো সমস্যা হওয়ার কথা নয়। এবার আমরা মনে করি দেখি যে, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্যটিতে কি বলা হয়েছিল। এই স্বীকার্য আমাদের বলেছিল যে, “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়”। যার অর্থ আমরা যদি একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি বস্তু বিবেচনা করি তাহলে আমরা কোনভাবেই বলতে পারব না যে কে গতিশীল আছে আর কে স্থির আছে।

চলুন, এখন আবার আইনস্টাইনের থট এক্সপেরিমেন্টে ফিরে যাই। আইনস্টাইনের থট এক্সপেরিমেন্ট থেকে এই বিষয়টি নিশ্চিত যে, আলোর বেগে আয়না নিয়ে দৌড়ালে আসলে আমাদের প্রতিবিম্ব আয়নাতে আমরা দেখতে পারবো না। ফলে নিজেদের মুখ আমরা আয়নায় দেখতে পাবো না। তাহলে কি দাঁড়ালো? একজন যদি আলোর বেগে আয়না নিয়ে দৌড় দেয় এবং আয়নায় দেখে নিজের প্রতিবিম্ব সেখানে পরছে না তখনই সে নিশ্চিতভাবে বলতে পারবে যে, সে আসলেই আলোর বেগে গতিশীল আছে। কিন্তু গ্যালিলিওর আপেক্ষিকতার স্বীকার্য আমাদের বলেছিল কোন একটি পরীক্ষা স্থির অবস্থায়ই করা হোক বা, সমবেগে গতিশীল থাকা অবস্থায়ই করা হোক না কেন একই ফলাফল দেবে। কিন্তু এই থট এক্সপেরিমেন্টে এই স্বীকার্যটি তো ভুল প্রমাণ হয়ে গেল!! তাহলে?

Image result for looking in mirror

আইনস্টাইন তার এই থট এক্সপেরিমেন্টে ইথার ধারণাটিকে প্রথমে সত্য বলে ধরে নিয়েছিলেন। অর্থাৎ, আলোর বেগ শুধু ইথারের সাপেক্ষেই সর্বদা ধ্রুব বা, ৩,০০,০০০ কি.মি./সেকেন্ড থাকে। অর্থাৎ, ইথার ধারণা সঠিক হলে গ্যালিলিওর প্রথম স্বীকার্যটি ভুল হয়ে যায়।

যদি গ্যালিলিওর প্রথম স্বীকার্যকে সত্য হতে হয় তাহলে নিজের প্রতিবিম্ব আয়নায় দেখা যেতে হবে স্বাভাবিকভাবেই। আর সেটা তখনই সম্ভব হবে যখন আলোর বেগ সকল কিছুর সাপেক্ষেই ধ্রুব বা, একই হবে। তাহলে আইনস্টাইন যদি আলোর বেগেও যান তাহলেও আলো তার সাপেক্ষে আলোর বেগেই চলবে। ফলে আলো স্বাভাবিকভাবেই আয়নায় পৌঁছাবে আর আইনস্টাইন তার মুখমন্ডল দেখতে পাবেন।

বিষয়টা আরেকটু পরিষ্কারভাবে বলা যাক। ধরি, আইনস্টাইন একটি আয়না নিয়ে স্থির দাঁড়িয়ে আছেন। তাহলে তিনি যদি এখন তার ডান হাতটি হালকা নাড়ান তবে খুব কম সময়ের মাঝে সামনের আয়নাতে তিনি তার ডান হাত নাড়ানোটি দেখতে পাবেন। এখন যদি তিনি আলোর কাছাকাছি বেগে আয়নাটি নিয়ে দৌড় দেন তবে গ্যালিলিয়ান আপেক্ষিকতা অনুসারে তার সাপেক্ষে আলোর বেগ কমে যাবে (যদি কোন গাড়ি ১০ মি./সেকেন্ড বেগে যায় আর আপনি ৫ মি./সেকেন্ড বেগে সেই একই দিকে দৌড়ান তাহলে আপনার কাছে মনে হবে গাড়ির বেগ কমে ৫ মি./সেকেন্ড হয়ে গিয়েছে। একই যুক্তিতে আলোর বেগের কাছাকাছি বেগে গেলে আপনার সাপেক্ষে আলোর বেগ কমে যাওয়ার কথা)। তাহলে ডান হাত নাড়ানোর অনেক পরে তিনি আয়নাতে তার হাত নাড়ানো দেখতে পাবেন। সময়ের এ পার্থক্য দিয়েও যে কেউ বলে ফেলতে পারবেন যে তিনি আসলে স্থির নয় বরং গতিশীল আছেন। অর্থাৎ, আপনি স্থির থাকলে আলোর বেগ আপনার কাছে যত হবে আপনি যদি আলোর কাছাকাছি বেগেও দৌড়ানো শুরু করেন তবেও আলোর বেগ আপনার সাপেক্ষে ৩,০০,০০ কি.মি./সেকেন্ডই থাকতে হবে। তবেই শুধুমাত্র গ্যালিলিওর প্রথম স্বীকার্যটিকে বাঁচানো সম্ভব হবে। আর এটি সত্য হলে আলোর বেগের ওপড় ইথারের আর কোন প্রভাব থাকে না। সুতরাং ইথার ধারণাটিও অপ্রয়োজনীয় হয়ে যায়।

অর্থাৎ, গ্যালিলিওর প্রথম স্বীকার্য এবং ইথার ধারণা এ দুটোই একই সাথে সত্য হতে পারেনা। এদের যেকোন একটাকে মিথ্যা হতেই হবে। এর আগেই মাইকেলসন-মর্লির এক্সপেরিমেন্ট থেকে আমরা দেখেছি ইথারের অস্তিত্ব প্রমাণ করা সম্ভব হয় নি। আইনস্টাইনও দেখলেন আলোর বেগকে যদি সব কিছুর সাপেক্ষে সর্বদা একই ধরে নেয়া হয় তাহলে ইথারের আর প্রয়োজন পড়ে না। এভাবেই ইথার ধারণাটি আইনস্টাইন বাতিল করে দিলেন আর গ্যালিলিওর প্রথম স্বীকার্যটিকেই নিজের স্পেশাল থিওরি অভ রিলেটিভিটিরও প্রথম স্বীকার্য বানিয়ে নিলেন। আর দ্বিতীয় স্বীকার্যতে বললেন, আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব যা আমরা উপড়ের থট এক্সপেরিমেন্ট থেকে দেখলাম।

আলোর বেগ সব কিছুর সাপেক্ষেই সর্বদা ধ্রুব এই কথাটি মেনে নিতে অনেকেরই প্রথম প্রথম অনেক কষ্ট হয়। তাই বিষয়টি আরেকটু ব্যাখ্যা করা যাক। ধরুন, পৃথিবীর মানুষ আর এলিয়েনদের মাঝে একটি যুদ্ধ শুরু হয়ে গিয়েছে। আপনি একটি স্পেস শিপ নিয়ে মহাকাশে গেলেন। একজন এলিয়েনও তাদের স্পেস শিপ নিয়ে মহাকাশে চলে গেলো। দুজনের স্পেস শিপেই কিন্তু হেডলাইটের মতো লাইট জ্বলার ব্যবস্থা আছে। হঠাৎ জ্বালানি শেষ হয়ে যাওয়াই আপনি আপনার স্পেস শিপটি নিয়ে স্থির দাঁড়িয়ে আছেন। তখনই এলিয়েন স্পেস শিপটি ২,০০,০০০ কি.মি./সেকেন্ড বেগে আপনার দিকে ছুঁটে আসল। আর আসতে আসতে ১০ কি.মি./সেকেন্ড বেগে গুলি ছুঁড়তে পারে এমন একটি বন্দুক থেকে আপনার দিকে গুলি ছুঁড়তে লাগলো। তাহলে আপনি গুলিগুলোর বেগ কত দেখবেন? নিশ্চয় উত্তর দেবেন যে, আপনি দেখবেন গুলিগুলো ২,০০,০১০ কি.মি./সেকেন্ড বেগে আপনার দিকে ধেয়ে আসছে। কারণ গ্যালিলিয়ান আপেক্ষিকতা বলে যে, গুলির বেগের সাথে স্পেস শিপের বেগ যোগ হয়ে যাবে। এখন স্পেস শিপটি যদি হঠাৎ করে তার তার হেড লাইটটি জ্বালিয়ে দেয় তাহলে কি দেখবেন? আলোর বেগ কত হবে? স্পেস শিপের বেগ + আলোর বেগ? মানে ৫,০০,০০০ কি.মি./সেকেন্ড? গ্যালিলিয়ান আপেক্ষিকতা তো তাই বলে। কিন্তু আইনস্টাইন বললেন, না। তখনও আপনি দেখবেন আলোর বেগ শুধু আলোর বেগের সমানই। মানে সর্বদাই ৩,০০,০০০ কি.মি./সেকেন্ড। এক ফোঁটা কমও নয় আবার এক ফোঁটা বেশিও নয়। এটাই আইনস্টাইনের দ্বিতীয় স্বীকার্য। এটাই সত্য!

আলোর বেগ যেভাবেই মাপা হোক না কেন তা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যায়। এ কারণেই মাইকেলসন-মর্লি যখন তাদের পরীক্ষাটি করেন তখন তাদের পরীক্ষায় সোজা পাঠানো আলো আর সমকোণে পাঠানো আলোর বেগের মাঝে কোন পার্থক্য ধরা পড়েছিলো না। পরবর্তিতেও অনেক পরীক্ষার মাধ্যমে প্রমাণিত হয়েছে যে আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে।

অর্থাৎ, দেখা গেলো আইনস্টাইনের এই ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে গেলাম। এ দুটি স্বীকার্যের উপড় ভিত্তি করেই দাঁড়িয়ে আছে আইনস্টাইনের বিশেষ আপেক্ষিকতার তত্ত্ব। তাই চলুন এ স্বীকার্য দুটি আরেকবার সুন্দর করে আমরা লিখে ফেলি। আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি হলঃ

১। “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়” (গ্যালিলিওর প্রথম স্বীকার্যের অনুরুপ)

২। আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে। আলোর বেগ যেভাবেই মাপা হোক না কেন তা সর্বদা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যাবে।

এ দুটি স্বীকার্যের উপড় ভিত্তি করে আমরা কাল দীর্ঘায়ন সম্বন্ধেও বুঝতে পারি। গ্যালিলিয়ান আপেক্ষিকতার দ্বিতীয় স্বীকার্য, যেখানে সময়কে পরম হিসেবে ধরা হয়েছিল তা যে ভুল তা আমরা আইনস্টাইনের উপড়ের দুটি স্বীকার্য থেকে পাই। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্য ঠিক হলেও দ্বিতীয় স্বীকার্যে পরম সময়ের বদলে পরম আলোর বেগ ব্যবহার করলেন আইনস্টাইন। এছাড়াও আমরা দৈর্ঘ্য সঙ্কোচন, ভর বা, ভরের আপেক্ষিকতা এবং ভর আর শক্তি যে একই জিনিস এমন অনেক কিছু আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটি থেকে পরবর্তিতে জানতে এবং বুঝতে পারি। এ বিষয়গুলো নিয়ে পরবর্তি কোন এক লেখায় কথা বলা যাবে। আজ এ পর্যন্তই। কষ্ট করে এতদূর পড়ার জন্য সকলকে ধন্যবাদ।

ইথারকে বাঁচাতে ফিটজগেরাল্ড-লরেন্টজের হাইপোথিসিস

ইতিহাসে ১৮৮৭ সালে মাইকেলসন-মর্লির ইথারের বিখ্যাত পরীক্ষাটিই ইথার ধারণাকে একরকম প্রায় বাতিলই করে দিয়েছিল। কিন্তু বিজ্ঞানীরা তো আর এত সহজে হাল ছেড়ে দেয়ার পাত্র নন। তাই সে সময় অনেক বিজ্ঞানীই ইথার ধারণাটিকে বাঁচিয়ে রাখার জন্য নতুন নতুন হাইপোথিসিস বা, প্রকল্প নিয়ে এগিয়ে আসলেন। এ বিষয়ে জানার আগে আমরা একটু মাইকেলসন-মর্লির পরীক্ষাটি কিছুটা গাণিতিকভাবে বোঝার চেষ্টা করি চলুন।

Image result

মাইকেলসন-মর্লি তাদের পরীক্ষায় আলোর উৎস থেকে আসা আলোকে দুই ভাগ করে এক অংশকে পৃথিবীর গতির অভিমুখে এবং আরেক অংশকে পৃথিবীর গতির সাথে সমকোণে পাঠিয়ে দিয়েছিলেন। ফলে মাইকেলসন মর্লি আশা করেছিলেন যে, আলোক রশ্মি দুটির বেগে পার্থক্য ধরা পড়বে। অর্থাৎ, আলোক রশ্মি দুটোর অর্ধরুপায়িত আয়না থেকে বিচ্ছেদ হয়ে যাওয়া বিন্দুতে আবার ফিরে আসার সময়ের মাঝে একটা পার্থক্য ধরা পড়ার কথা ছিল। গণিতের সাহায্যে এ পার্থক্য খুব সহজেই বের করে ফেলা যায়। চলুন চেষ্টা করে দেখি। কেউ চাইলে গণিতের এই অংশটি সরাসরি বাদ দিয়ে দিতে পারেন। তাতেও পরবর্তি বিষয়গুলো বুঝতে এতটুকুও সমস্যা হবার কথা নয়।

*গণিতের শুরু*

প্রথমেই আমরা দেখবো একটা অর্ধরুপায়িত আয়না থেকে আলোক রশ্মি যখন দুইভাগ হয়ে যায় তখন পৃথিবীর গতির অভিমুখে যাওয়া আলোকরশ্মিটির “ L ” দূরত্বে থাকা আয়নাটিতে ধাক্কা খেয়ে আবার অর্ধরুপায়িত আয়নায় ফেরত আসতে কত সময় লাগে।

আমরা ধরে নেই আলোর বেগ “ c ” এবং পৃথিবীর বেগ “ v ”।

এখন, আমরা জানি, বেগ= দূরত্ব/সময়। তাহলে সময়=কত? হ্যাঁ, সময়= দূরত্ব/বেগ।

তাহলে আলোটি যখন পৃথিবীর অভিমুখে সামনে যায় তখন তার বেগ হয় (আলোর বেগ + পৃথিবীর বেগ) এর সমান। মানে (c+v) । আবার আয়নায় ধাক্কা খেয়ে আলো যখন পৃথিবীর বেগের বিপরীত দিকে আসতে থাকে তখন তার বেগ হয় (আলোর বেগ – পৃথিবীর বেগ) অর্থাৎ, (c-v)।

প্রতিফলক আয়না থেকে অর্ধরুপায়িত আয়নার দূরত্ব কিন্তু সবসময়ই সমান। আর তা হল “ L ”। তাহলে আলোক রশ্মিটি পৃথিবীর বেগের অভিমুখে সামনে যায় তখন সামনের আয়নায় পৌঁছাতে এর কত সময় লেগেছে? হ্যাঁ, সময়= দূরত্ব/বেগ এই সমীকরণ আমরা এখানে ব্যবহার করতে পারি। এই সময়কে যদি  ধরি তাহলে,

এখন, আলোর পৃথিবীর বেগের বিপরীতে ফিরে আসার সময়কে  যদি ধরি তাহলে,

তাহলে আলোর একবার সামনের আয়নায় যেয়ে আবার অর্ধরুপায়িত আয়নায় ফিরে আসার মোট সময়,

অর্থাৎ,

                                                                                                                                        ……………………………………………………(1)

 

আরেকটি আলোক রশ্মিকে পৃথিবীর বেগের অভিমুখের সমকোণে পাঠানো হয়েছিলো। সেই আলোক রশ্মির সামনের আয়নায় যাওয়া এবং ফিরে আসার মোট সময় এবার বের করে ফেলা যাক। এক্ষেত্রে আলোকে সমকোণে পাঠানো হলে তা পৃথিবীর বেগের কারণে ভেক্টরের নিয়মানুসারে সোজা না যেয়ে নিচের ছবিটির (b) অপশানের মত একটু বেঁকে যাবে।

এভাবে গেলেই আলোকরশ্মিটি আয়নাতে আঘাত করে আবার অর্ধরুপায়িত আয়নায় ফেরত আসতে পারবে। (a) অপশানের মতো একদম সোজা গেলে কিন্তু পৃথিবীর বেগের কারণে সামনের আয়নাটি কিছুটা সাইডে বা, পার্শ্বে সরে যাবে এবং আলোক রশ্মি আয়নায় ধাক্কা না খেয়ে বরং সোজা চলে যাবে! আলোক রশ্মিটি এভাবে না বেঁকে একদম সোজা তখনই যেতে পারবে যখন পৃথিবী স্থির থাকবে। অর্থাৎ, সেক্ষেত্রে যাওয়া এবং ফিরে আসার সময় হতো,

কিন্তু পরীক্ষার সময় বিজ্ঞানীরা জানতেন যে, আলোর বেগের ওপড় পৃথিবীর বেগের প্রভাব আছে। কিন্তু তারপরও নোবেল বিজয়ী বিজ্ঞানী মাইকেলসন সমকোণে পাঠানো আলোর ক্ষেত্রে এই ভুল হিসাবটিই করে ফেলেন। তিনি এই হিসাবের উপড় ভিত্তি করে পরীক্ষাটি করেছিলেন ১৮৮১ সালে। পরবর্তিতে ১৮৮২ সালে আলফ্রেড পটিয়ের এবং ১৮৮৬ সালে লরেন্টজ বিষয়টি ঠিক করে দেন। ১৮৮৭ সালে আবার বিশুদ্ধ ভাবে এই পরীক্ষাটি করেও মাইকেলসন আলোর বেগের কোন তারতম্য ধরতে পারেন নি।

এখন যদি আলো পৃথিবীর বেগের কারণে ছবির (b) অপশানের মতো বেঁকে যায় তাহলে আলোক রশ্মিটিকে কিছুটা বেশি দূরত্ব অতিক্রম করতে হবে আগের “L” দূরত্বের চেয়ে। ধরি এই দূরত্ব “L*”। L* দূরত্ব আলো অতিক্রম করে “t” সময়ে। সুতরাং, L*=c t । এই সময়ে অর্ধরুপায়িত আয়নাটি v বেগে অর্থাৎ, পৃথিবীর বেগে সামনে এগিয়ে গিয়েছে। অর্থাৎ, অর্ধরুপায়িত আয়নাটির t সময়ে অতিক্রান্ত দূরত্ব “vt” . তাহলে পীথাগোরাসের সূত্র অনুসারে,

বা,

বা,

বা,

আমরা যদি উপড়ের ছবির (b) অপশানটির দিকে তাকায় তবে দেখবো এতক্ষণ আমরা এর অর্ধেক অংশ নিয়ে কাজ করলাম। আলোক রশ্মিটি আবার একইভাবে (পদার্থবিজ্ঞানের ভাষায় এখানে এক ধরণের সিমেট্রি তৈরি হয়েছে) ফিরে আসবে। অর্থাৎ, উপড়ে আমরা যে অর্ধেক পথের সময় বের করলাম তাকে ২ দ্বারা গুন করে দিলেই আমরা সমকোণে পাঠানো আলোক রশ্মিটির দুইভাগ হয়ে যাওয়ার পর আবার অর্ধরুপায়িত আয়নায় ফিরে আসতে কত সময় লাগবে তা বের করে ফেলতে পারবো। তাহলে, সমকোণে পাঠানো আলোর জন্য মোট সময়,

                                                                                                                                                         …………………………………….(2)

 

এই চিত্রের লাল আলোকরশ্মিটি পৃথিবীর বেগের সাথে সমকোণে পাঠানো আলোক রশ্মি, আর নীল আলোকরশ্মিটি পৃথিবীর অভিমুখে পাঠানো আলোক রশ্মি।

*গণিত শেষ*

উপড়ের পুরো গাণিতিক অংশের কিছু না দেখলেও শুধু (১) এবং (২) নং সমীকরণটি আমাদের লাগবে। আমরা এই ১ নম্বর এবং ২ নম্বর একুয়েশান ২ টি ভালো করে লক্ষ্য করি। দুই জায়গাতেই   এসেছে যার পুরোটাই একটা ধ্রুবক। (২) নং সমীকরণে আমরা ফ্যাক্টর হিসেবে পেয়েছি  কে। এবং (১) নং সমীকরণে আমরা ফ্যাক্টর হিসেবে পেয়েছি (২) নং সমীকরণের ফ্যাক্টরের স্কয়ার বা, বর্গ     কে।

এই যে, (২) নং সমীকরণের   ফ্যাক্টরটি, এই ফ্যাক্টরটিকেই বলা হয় লরেন্টজ ফ্যাক্টর। একে গ্রীক অক্ষর গামা  দ্বারা প্রকাশ করা হয়। মাইকেলসন-মর্লি যখন ইথারের অস্তিত্ব প্রমাণে ব্যার্থ হলেন তখন এই ফ্যাক্টরটি কোঅর্ডিনেট ট্রান্সফর্মেশানের জন্য ১৮৮৭ সালে প্রথম ব্যবহার করেন জার্মান পদার্থবিদ উলডেমার ভয়েগট ( Woldemar Voigt )।

Image result for Woldemar Voigt lorentz
উলডেমার ভয়েগট

লরেন্টজ প্রথম এটি ব্যবহার করেন ১৮৯৫ সালে। কিন্তু তিনি উলডেমার ভোগেটের কাছ থেকে কোন রকম ধারণা ধার করেননি। তার কোঅর্ডিনেট ট্রান্সফর্মেশান অনেকটাই অন্যরকম ছিল। এরপর লার্মর, লরেন্টজ এবং পয়েন্ট কেয়ার মিলে লরেন্টেজের ট্রান্সফর্মেশানকে পরিপূর্ণতা দান করেছিলেন।

Image result for lorentz
স্যার হেন্ডরিক লরেন্টজ

অন্য দিকে জর্জ ফ্রান্সিস ফিটজগেরাল্ড পৃথিবীর ইতিহাসে প্রথম দৈর্ঘ্য সঙ্কোচনের কথা বললেন। তিনি বললেন, পৃথিবীর যখন ইথারের ভেতর দিয়ে যায় তখন মাইকেলসন-মর্লি যে যন্ত্রগুলোর দ্বারা আলোর বেগ মাপার চেষ্টা করছিলো সেগুলো আসলে ছোট বা, সঙ্কুচিত হয়ে যায়। মনে রাখতে হবে তিনি পদার্থের নিজেদের অণু-পরমাণুর সঙ্কোচনের কথা বলেছিলেন। স্পেস-টাইম বা, স্থান-কালের সঙ্কোচনের কথা বলেন নি। লরেন্টজ ফিটজগেরাল্ডের এই ধারণাটি গ্রহণ করলেন এবং দৈর্ঘ্য সঙ্কোচনের জন্য একটি ফ্যাক্টর বের করলেন যা,  ।

Image result for fitzgerald contraction

লরেন্টজ এবং ফিটজগেরাল্ড এ দুজন মিলে ইথারকে বাঁচানোর জন্য দাঁড়া করালেন “ফিটজগেরাল্ড-লরেন্টজ সঙ্কোচন প্রকল্প”। এ প্রকল্প অনুসারে কোন পদার্থ ইথারের বেগ বরাবর সঙ্কুচিত হয়। পদার্থটির দৈর্ঘ্য যদি হয়, “L”, তবে তার পরিবর্তিত দৈর্ঘ্য হবে, zrdxcfbhnjk। লরেন্টজ আর ফিটজগেরাল্ডের এ প্রকল্প বেশ সাড়া ফেলে দেয়। কারণ এটি ব্যবহার করে তারা মাইকেলসন-মর্লির পরীক্ষার ব্যাখ্যা দিতে সক্ষম হলেন। কিভাবে? আচ্ছা চলুন দেখা যাক।

মাইকেলসন-মর্লির পরীক্ষায় আলোক রশ্মিদুটোর অর্ধরুপায়িত আয়নায় ফিরে আসতে সমান সময় লেগেছিল। অর্থাৎ, (১) এবং (২) নং সমীকরণের tfuvybunjk একই ছিল। এখন লরেন্টজ-ফিটজগেরাল্ড হাইপোথিসিস অনুসারে পৃথিবীর বেগ বরাবর বা, আপেক্ষিকভাবে বললে ইথারের বেগ বরাবর যে আলোক রশ্মিটি পাঠানো হয়েছিল সে বরাবর সব কিছুর দৈর্ঘ্য সঙ্কোচন ঘটবে। আগে এ দৈর্ঘ্য ছিল “L”। কিন্তু এখন হয়ে যাবে wzrexnui । দৈর্ঘ্যের এ মানটি  (১) নং সমীকরণে বসালে আমরা পাই,

এই “  ” হলো (২) নং সমীকরণে সমকোণে পাঠানো আলোর ফিরে আসার সময়। সুতরাং, (১) নং সমীকরণে লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প ব্যবহার করে আমরা যে সময় পেলাম তা (২) নং সমীকরণের সময়ের সমান। সুতরাং, লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প সঠিক হলে, আলোকে পৃথিবীর অভিমুখে বা, সমকোণে যে পথেই পাঠানো হোক না কেন তার অর্ধরুপায়িত আয়নায় ফিরে আসতে সমান সময় লাগার কথা। এ ঘটনাটিই মাইকেলসন-মর্লির পরীক্ষায় দেখা গেছে। অর্থাৎ, শেষ পর্যন্ত তাদের পরীক্ষার একটা ব্যাখ্যা দাঁড় করানো সম্ভব হলো। সেটাও কাল্পনিক ইথার এবং পদার্থের দৈর্ঘ্য সঙ্কোচনের মত ধারণার বিনিময়ে।

লরেন্টজ-ফিটজগেরাল্ডের সঙ্কোচন প্রকল্প মোটামুটি সঠিক পথেই ছিল, কিন্তু সমস্যা ছিল তাদের স্বীকার্য বা, অনেকটা জোর করে ধরে নেয়া বিষয়গুলোতে যা সন্তোষজনকভাবে ব্যাখ্যা এবং সমাধান করেছিলেন স্যার আলবার্ট আইনস্টাইন। আইনস্টাইনের সেই যুগান্তকারী ধারণাগুলো আমাদের বিশ্ব জগৎকে দেখার দৃষ্টিভংগিই পাল্টিয়ে দিয়েছিলো। আইনস্টাইনের সেই যুগান্তকারী স্পেশাল থিওরি অফ রিলেটিভিটির কথা আমরা না হয় জানবো অন্য কোন লেখায়। আজ এ পর্যন্তই। ধন্যবাদ।