ক্ষুদ্র কণায় বিপুল শক্তি

সম্প্রতি রূপপুর পারমাণবিক বিদ্যুৎ কেন্দ্র স্থাপনের কর্মযজ্ঞ শুরু হয়েছে। এর মাধ্যমে বাংলাদেশও প্রবেশ করেছে পরমাণু যুগের ভেতর। ফলে পরমাণু বিদ্যুৎ কেন্দ্র তথা নিউক্লিয়ার পাওয়ার প্ল্যান্ট এখন সারা দেশের আলোচনার বিষয়। বিশেষ করে যারা পরিবেশ নিয়ে ভাবছেন কিংবা যারা প্রযুক্তিগত উন্নয়ন নিয়ে ভাবছেন তারা রূপপুরের পারমাণবিক বিদ্যুৎ কেন্দ্র নিয়ে আলোচনা করছেন।

পারমাণবিক বিদ্যুৎ কেন্দ্র মূলত অন্য সব বিদ্যুৎ কেন্দ্রের মতোই। জলবিদ্যুৎ কেন্দ্র, কয়লাভিত্তিক বিদ্যুৎ কেন্দ্র, গ্যাসভিত্তিক বিদ্যুৎ কেন্দ্র এবং পারমাণবিক বিদ্যুৎকেন্দ্রের মূল প্রক্রিয়া একই।[1] সবগুলোতেই ট্রান্সফরমার থাকে, জেনারেটর থাকে, টারবাইন থাকে। এদের কর্মপ্রক্রিয়াও প্রায় একই, ভিন্নতা শুধুমাত্র জ্বালানীতে।

জ্বালানী না বলে বলতে হবে শক্তির মূল উৎসতে। কোনো কোনোটিতে শক্তির উৎস হিসেবে পানির বিভব শক্তি[2] ব্যবহার করা হয়, কোনো কোনোটিতে শক্তির জন্য কয়লা কিংবা গ্যাস পুড়ানো হয় আবার কোনো কোনোটিতে অণু-পরমাণুর মাঝে লুকিয়ে থাকা বিশেষ কৌশল ব্যবহার করা হয়।

অন্যান্য তাপবিদ্যুৎ কেন্দ্রের মতোই নিউক্লিয়ার বিদ্যুৎ কেন্দ্রের প্রক্রিয়া। ছবি: উইকিমিডিয়া কমন্স

পরমাণুর বিশেষ কৌশলের বিদ্যুৎ কেন্দ্রটি হলো পারমাণবিক বিদ্যুৎ কেন্দ্র। পারমাণবিক বিদ্যুৎ কেন্দ্রকে নিউক্লিয়ার বিদ্যুৎ কেন্দ্রও বলা হয়। এ ধরনের বিদ্যুৎ কেন্দ্রে পরমাণুকে ভেঙে সেখান থেকে শক্তি বের করে আনা হয়। প্রশ্ন হতে পারে পরমাণুকে ভাঙলে কেন শক্তি উৎপন্ন হবে? এ প্রশ্নের উত্তর জানতে হলে আমাদেরকে উঁকি দিতে হবে পরমাণুর নিউক্লিয়াসের ভেতরে।

প্রকৃতিতে চার ধরনের মৌলিক বল আছে। মহাকর্ষ বল, তাড়িতচুম্বক বল, দুর্বল নিউক্লীয় বল ও সবল নিউক্লীয় বল।  এদের মাঝে সবচেয়ে শক্তিশালী হলো সবল নিউক্লীয় বল।[3] সবল নিউক্লীয় বলের শক্তি কেমন বেশি তা একটি উদাহরণের মাধ্যমে পরিষ্কার হয়ে যাবে। সাধারণত ধনাত্মক চার্জ আকর্ষণ করে ঋণাত্মক চার্জকে। ঋণাত্মক-ঋণাত্মক কিংবা ধনাত্মক-ধনাত্মক চার্জ কখনো একত্রে অবস্থান করে না।

কিন্তু পরমাণুর নিউক্লিয়াসের গঠনের দিকে লক্ষ্য করলে দেখা যাবে সেখানে ধনাত্মক চার্জের প্রোটনগুলো একত্রে অবস্থান করছে। এটা সম্ভব হয়েছে সবল নিউক্লীয় বলের উপস্থিতির ফলে। সবল নিউক্লীয় বলের শক্তি এতই বেশি যে প্রোটনের পারস্পরিক বিকর্ষণকেও কাটিয়ে দিয়ে জোর করে বসিয়ে রাখতে পারে।[4]

প্রবল শক্তি দিয়ে ধনাত্মক চার্জের পরস্পর বিকর্ষণকারী প্রোটনগুলোকেও একত্রে আটকে রাখতে পারে। ছবি: সায়েন্স ব্রেইন ওয়েভ

কিন্তু সবল নিউক্লীয় বলের বড় ধরনের একটি সীমাবদ্ধতা আছে। এটি খুবই অল্প দূরত্ব পর্যন্ত আকর্ষণ করতে পারে। এর আকর্ষণের পাল্লা খুবই কম।[5] এতই কম যে বড় আকারের পরমাণুর নিউক্লিয়াসকে একত্রে রাখতে পারে না। বড় পরমাণুর বড় নিউক্লিয়াসে যদি কোনোভাবে আঘাত করা যায় তাহলে খুব সহজেই এদেরকে ভেঙে একাধিক টুকরো করে ফেলা যাবে।

একাধিক টুকরো হলে পরমাণুর আকৃতি কমে আসবে ফলে সেখানে সবল নিউক্লীয় বল দৃঢ়ভাবে প্রভাব রাখতে পারবে। বড় পরমাণুর বেলায় সবল নিউক্লীয় বলের দুর্বলতাকে ভিত্তি করেই মূলত পারমাণবিক বিদ্যুৎ কেন্দ্র কিংবা পারমাণবিক বোমা তৈরি করা হয়।

যেহেতু এটি বিদ্যুৎ শক্তি বা তাপ শক্তি তাই শক্তি সম্পর্কিত কোনো না কোনো সূত্রের প্রয়োগ থাকবেই। শক্তি সম্পর্কে আইনস্টাইনের বিখ্যাত একটি সূত্র আছে। সূত্রটি খুবই সহজ, E=mc^2। সচরাচর আমরা দেখি বস্তু কখনো সৃষ্টিও হয় না ধ্বংসও হয় না। এক আকৃতি থেকে আরেক আকৃতিতে রূপান্তরিত করা যায় শুধু। চাল থেকে চালের গুড়ি করা যায়, গুড়ি থেকে রুটি তৈরি করা যায়, রুটি খাওয়া যায়, সে রুটির উপাদানগুলো দেহে মিশে একসময় ভিন্ন রূপে দেহ থেকে বের হয়ে যায়।

এক বস্তু থেকে আরেক বস্তু হচ্ছে কিন্তু ঘুরেফিরে মূল বস্তুর পরিমাণ একই থাকছে। নতুন কোনো বস্তু তৈরি হচ্ছে না কিংবা ধ্বংস হচ্ছে না। শক্তির বেলাতেও একই কথা প্রযোজ্য। এক রূপ থেকে আরেক রূপে রূপান্তর করা যায় শুধু, নতুন করে তৈরি কিংবা ধ্বংস করা যায় না। যেমন মোবাইলে কথা বলকে শব্দ শক্তি রূপান্তরিত হয় যান্ত্রিক শক্তিতে, যান্ত্রিক শক্তি আবার অন্য প্রান্তের মোবাইলে গিয়ে শব্দ শক্তিতে পরিণত হয়। যেভাবেই যাক, যতগুলো ধাপ পেরিয়ে যাক মূল শক্তির পরিমাণ একই থাকছে।

এক রূপ থেকে আরেক রূপে রূপান্তরিত হয় শক্তি। ছবি: স্মাগমাগ

কিন্তু আইনস্টাইনের সূত্র বলছে অন্য কথা। এ সূত্র অনুসারে নতুন করে বস্তু তৈরি কিংবা ধ্বংস করা যাবে। উল্টোভাবে নতুন করে শক্তিও তৈরি কিংবা ধ্বংস করা যাবে।  সূত্রে E হলো শক্তি আর m হলো ভর। যেহেতু ভর ও শক্তি একই সূত্রে আছে তারমানে কোনো না কোনো একদিক থেকে তারা পরস্পরের সাথে সম্পর্কযুক্ত। অনেকে ইতিমধ্যেই ধরে ফেলেছে আইনস্টাইনের সূত্র বলছে ভরকে (অর্থাৎ বস্তুকে) শক্তিতে রূপান্তরিত করা যায় এবং উল্টোভাবে শক্তিকেও বস্তুতে রূপান্তরিত করা যায়।

সূত্রে আরো একটি অংশ বাকি রয়ে গেছে, । এখানে c হলো আলোর বেগ। এটি গুণক হিসেবে ভরের সাথে আছে। আলোর বেগ অবিশ্বাস্য পরিমাণ বেশি। প্রতি সেকেন্ডে ৩ লক্ষ কিলোমিটার প্রায়। যেহেতু আলোর বেগের মান বেশি এবং এটি এখানে গুণ হিসেবে আছে, তারমানে অল্প পরিমাণ বস্তুকে রূপান্তরিত করলে প্রচুর পরিমাণ শক্তি পাওয়া যাবে। পারমাণবিক বিদ্যুৎ কেন্দ্রে সবল নিউক্লীয় বলের দুর্বলতার পাশাপাশি আইনস্টাইনের এই ভর-শক্তি সম্পর্কের সূত্রটিকেও ব্যবহার করা হয়।

পারমাণবিক বিদ্যুৎ কেন্দ্রে ইউরেনিয়াম কিংবা প্লুটোনিয়াম মৌল ব্যবহার করা হয়। এ মৌলগুলোর আকার বড় হয়ে থাকে। বাইরে থেকে একটি নিউট্রন দিয়ে যদি এদের নিউক্লিয়াসে আঘাত করে তাহলে নিউক্লিয়াসটি দুই ভাগে বিভক্ত হয়ে যাবে। বিভক্ত হয়ে দুটি মৌল তৈরি করবে। মৌলের পাশাপাশি অতিরিক্ত কিছু নিউট্রনও তৈরি করবে।

নতুন দুটি মৌল এবং নতুন তৈরি হওয়া নিউট্রনের ভর একত্রে যোগ করলে মূল ইউরেনিয়াম কিংবা প্লুটোনিয়ামের ভরের সমান হবার কথা। কিন্তু অবাক করা বিষয় হলো এখানে মূল ভর থেকে পরিবর্তিত ভর সামান্য কম থাকে। এই কম ভরটা হারিয়ে গেছে। হারিয়ে যাওয়া ভরটা আইনস্টাইনের সূত্রানুসারে শক্তিতে পরিণত হয়ে গেছে।[6] এই শক্তিকে ব্যবহার করেই টারবাইন ঘোরানো হয় এবং বিদ্যুৎ উৎপাদন করা হয়।

নিউট্রনের আঘাতে ভেঙে যায় ইউরেনিয়াম পরমাণু। ছবি: উইকিমিডিয়া কমন্স

তবে প্রক্রিয়াটিকে যত সহজ মনে হচ্ছে বাস্তবে এটি তত সহজ নয়। ছবিটির দিকে খেয়াল করুন। প্রথম একটি নিউট্রন দিয়ে আঘাত করার ফলে পরমাণু ভেঙে আরো কতগুলো নিউট্রন তৈরি হয়েছে। সে নিউট্রনগুলো আবার অন্যান্য পরমাণুকে আঘাত করবে এবং সেসব পরমাণু থেকেও নিউট্রন অবমুক্ত হবে।

সেই নিউট্রন আবার আরো মৌলকে আঘাত করবে। এভাবে একটি চেইন বিক্রিয়ার জন্ম নেবে। এর ভয়াবহতা সহজেই আচ করার কথা। কারণ এটি সমান্তর ধারায়[7] নয়, গুণোত্তর ধারায়[8] অগ্রসর হচ্ছে। এই ঘটনাটি গুণোত্তর ধারায় অগ্রসর হবার মানে হচ্ছে একসময় শক্তির তীব্রতায় তা প্রবল বিস্ফোরণ ঘটিয়ে ফেলবে।

তবে এই চেইন বিক্রিয়াকে নিয়ন্ত্রণ করা যায়। এমন কোনোকিছু যদি দিয়ে দেয়া যায় যা প্রয়োজনের অতিরিক্ত নিউট্রনকে শোষণ করে নেবে তাহলে পুরো প্রক্রিয়াটি নিয়ন্ত্রণে চলে আসে। ক্যাডমিয়াম নামে একটি মৌল আছে। এরা নিউট্রন শোষণ করতে পারে। নিউক্লিয়ার রিঅ্যাকটরের মাঝে ক্যাডমিয়ামের রড রেখে দিলে তারা অতিরিক্ত নিউট্রনকে শোষে নিতে পারে।[9]

ক্যাডমিয়ামের নিয়ন্ত্রক রড। ছবি: টকিং আইডেন্টিটি

এখানেও কিছু জ্যামিতিক হিসেব করা যায়। রডের পরিমাণ (ক্ষেত্রফল) যদি বাড়িয়ে দেয়া হয় তাহলে নিউক্লিয়ার বিক্রিয়া বেশি নিয়ন্ত্রিত হবে, ফলে বিদ্যুৎ কম উৎপন্ন হবে। আবার যদি ক্যাডমিয়াম রড কমিয়ে নেয়া হয় তাহলে চেইন রিঅ্যাকশন অধিক হারে হবে, ফলে বিদ্যুৎ বেশি উৎপন্ন হবে।

কিন্তু কেউ যদি বেশি শক্তি উৎপাদনের জন্য কমাতে কমাতে বেশি কমিয়ে ফেলে কিংবা সম্পূর্ণই সরিয়ে ফেলে তাহলে নিউক্লিয়ার বিক্রিয়া নিয়ন্ত্রণ হারিয়ে বড় ধরনের দুর্ঘটনা ঘটিয়ে ফেলতে পারে। রাশিয়ার চেরনোবিল দুর্ঘটনা মূলত নিয়ন্ত্রণহীনতার কারণেই ঘটেছিল। এধরনের দুর্ঘটনায় এতই তাপ উৎপন্ন হতে পারে যে মুহূর্তের মাঝেই চুল্লিটিকে গলিয়ে ফেলতে পারবে।[10]

একটি বড় মৌলকে ভেঙে দুটি ছোট মৌল তৈরি করার এই ঘটনাকে বলা হয় নিউক্লিয়ার ফিশন। পদার্থবিজ্ঞানে খুব গুরুত্বের সাথে নিউক্লিয়ার ফিশন আলোচনা করা হয়। এরকম আরো একটি ঘটনা আছে। দুটি ছোট মৌল একত্র হয়ে বড় একটি তৈরি করা।

একাধিক মৌল মিলে একটি মৌল তৈরি করার ঘটনাকে বলে নিউক্লিয়ার ফিউশন। এতেও প্রচুর শক্তি উৎপন্ন হয়। এর জাজ্বল্যমান উদাহরণ হচ্ছে আমাদের সূর্য। সূর্য থেকে যত ধরনের শক্তি পাই তার সবই তৈরি হচ্ছে নিউক্লিয়ার ফিউশন থেকে। কোনো তেল নয়, কোনো কাঠ নয়, কোনো গ্যাস নয় শুধুমাত্র নিউক্লিয়ার বিক্রিয়ার মাধ্যমে সূর্যের বুকে তৈরি হচ্ছে অকল্পনীয় শক্তি।

২য় বিশ্ব যুদ্ধের সময় ভয়ানক ক্ষমতার বোমা বানানোর জন্য পরমাণু প্রযুক্তির উদ্ভব হয়েছিল। পরবর্তীতে মানবকল্যাণে ব্যবহার করার চিন্তা ভাবনা করা হয়। ১৯৫১ সালের ২০ ডিসেম্বর যুক্তরাষ্ট্রে দ্য এক্সপেরিমেন্টাল ব্রিডার রিঅ্যাকটর ১ থেকে প্রথম পারমাণবিক বিদ্যুৎ উৎপাদন করা হয়। পরবর্তীতে এই ধারণা সারা বিশ্বে ছড়িয়ে যায়।

বর্তমানে অনেকগুলো দেশে পারমাণবিক বিদ্যুৎ কেন্দ্র থেকে বিদ্যুৎ উৎপাদিত হচ্ছে। পৃথিবীর সামগ্রিক বিদ্যুৎ চাহিদার ১৬ শতাংশ আসে পারমাণবিক বিদ্যুৎ থেকে।[11] কোনো কোনো দেশে পারমাণবিক বিদ্যুতের ব্যবহার খুবই বেশি। যেমন ফ্রান্সে বিদ্যুতের সামগ্রিক চাহিদার ৭৭ শতাংশ আসে পারমাণবিক বিদ্যুৎ খাত থেকে।[12]

অনেক দেরীতে হলেও বাংলাদেশ রূপপুর পরমাণু বিদ্যুৎ প্রকল্পের মাধ্যমে এই দৌড়ে যুক্ত হয়েছে। এর পক্ষে বিপক্ষে অনেক মত আছে। পক্ষের মত বিপক্ষের মত উভয়েরই প্রয়োজন আছে। আমরাও চেষ্টা করবো পরমাণু বিদ্যুৎ ও রূপপুর প্রকল্প সম্বন্ধে আরো আলোচনা করতে।

তথ্য সূত্রঃ 

[1] পারমাণবিক বিদ্যুৎ সমস্যা: রূপপুর প্রকল্প ও বাংলাদেশ, বাংলাদেশ অধ্যয়ন কেন্দ্র

[2] বিভব শক্তিকে বলা যেতে পারে সঞ্চিত শক্তি। বাসার ছাদের উপর যদি এক টাংকি পানি থাকে তাহলে ভূমির সাপেক্ষে পানিতে অনেকগুলো শক্তি সঞ্চিত আছে। একইভাবে সমস্ত পৃথিবী থেকে সূর্যের তাপের মাধ্যমে পানির কণাগুলো বাষ্প হয়ে বায়ুমণ্ডলে মিশে। তারপর পানিচক্রের মাধ্যমে নদীতে আসে। নদীতে যদি বাধ দিয়ে একপাশের পানি আটকে দেয়া যায় তাহলে একপাশে পানির স্তর উপরে উঠে যাবে এবং অপর পাশে পানির স্তর নীচে নেমে যাবে। তাহলে নীচের অংশের সাপেক্ষে উপরের অংশে শক্তি সঞ্চিত আছে। উপরের পানিকে একটি টানেল দিয়ে নিয়ন্ত্রিতভাবে পড়তে দিয়ে তাকে ব্যবহার করে বিদ্যুৎ উৎপাদন করা যায়। একেই বলে বিভব শক্তি ব্যবহার করে বিদ্যুৎ উৎপাদন।

[3] Fundamental Forces, http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/funfor.html

[4] https://education.jlab.org/qa/atomicstructure_04.html

[5] http://aether.lbl.gov/elements/stellar/strong/strong.html

[6] আরো একটুখানি বিজ্ঞান, মুহম্মদ জাফর ইকবাল, কাকলী প্রকাশনী, ২০১১

[7] ১-এর পর ২, ২-এর পর ৩, ৩-এর পর ৪, ৪-এর পর ৫, এভাবে যোগের মতো কোনো ধারা চলমান থাকলে তাকে বলে সমান্তর ধারা।

[8] ১-এর পর ২, ২-এর পর ৪, ৪-এর পর ৮, ৮-এর পর ১৬, ১৬-এর পর ৩২ এভাবে কোনো ধারা গুণ বা সূচকের মতো চলমান থাকলে তাকে বলে গুণোত্তর ধারা।

[9] আরো একটুখানি বিজ্ঞান, মুহম্মদ জাফর ইকবাল, কাকলী প্রকাশনী, ২০১১

[10] আরো একটুখানি বিজ্ঞান, মুহম্মদ জাফর ইকবাল, কাকলী প্রকাশনী, ২০১১

[11] পারমাণবিক বিদ্যুৎ সমস্যা: রূপপুর প্রকল্প ও বাংলাদেশ, বাংলাদেশ অধ্যয়ন কেন্দ্র

[12] আরো একটুখানি বিজ্ঞান, মুহম্মদ জাফর ইকবাল, কাকলী প্রকাশনী, ২০১১

featured image: oilprice.com

E=mc^2 আইনস্টাইনই কি প্রথম আবিষ্কার করেছিলেন?

যদি বর্তমানে কাউকে জিজ্ঞেস করা হয় যে পৃথিবীর সবচেয়ে সুন্দর সমীকরণ কোনটা? বা, যদি পৃথিবীর সবচেয়ে জনপ্রিয় সমীকরণ খুঁজে বের করার চেষ্টা করা হয় তাহলে নিঃসন্দেহে যে সমীকরণটির কথা সবার আগে আসবে সেটি হল,  । এই সমীকরণটির পূর্বে সম্ভবত নিউটনের মহাকর্ষের সূত্রটিকেই সবচেয়ে জনপ্রিয় সূত্র হিসেবে ধরে নেয়া হত। এই সমীকরণ আমাদের বলে ভর আর শক্তি আসলে একই জিনিস। একে অপরের অন্য রুপ! এই সমীকরণ আমাদের বলে কোন সিস্টেমের শক্তি, E হলে তার পরিমাণ হবে সেই সিস্টেমের ভরের সাথে আলোর বেগের বর্গ গুন করলে যে পরিমাণ পাব ঠিক সেই পরিমাণ।  সমীকরণটির প্রমাণ আমরা অন্য কোন এক দিন দেখব। আজ দেখবো এই সমীকরণটি সৃষ্টির আগের ইতিহাস। আজ আমরা জানব যে, আইনস্টাইনই কি প্রথম এর কথা বলেছিলেন? তিনিই কি প্রথম ভর-শক্তির নিত্যতা সূত্রের কথা বলেছিলেন?

Image result

প্রকৃতপক্ষে ভর শক্তির এ নিত্যতা সূত্রের কথা ১৮৭০ সালের পর থেকেই বেশ আলোচনায় উঠে এসেছিল। এ ধরনের নিত্যতা সূত্রের কথা বলেছিলেন জে.জে. থমসনও। হ্যাঁ, ইনি সেই জে.জে. থমসন যিনি ইলেক্ট্রনের আবিষ্কার করেছিলেন। ইলেক্ট্রনের আবিষ্কারেরও বেশ আগে ১৮৮১ সালে তার ভর শক্তির নিত্যতা বিষয়ক ফলাফলটি ছিল বেশ জটিল। তার ফলাফলে বস্তুর চার্জ, ব্যাসার্ধ এমন কিছু বিষয়ের বেশ প্রভাব ছিল। কিন্তু ১৮৮৯ সালে ইংরেজ পদার্থবিদ অলিভার হেভিসাইড তার এই কাজ আরো কিছুটা সরল করে দেখালেন যে, কোন গোলাকার ইলেক্ট্রিক ফিল্ডের শক্তি আসলে,  । এখানে m কে  উল্লেখ করা হয়েছিল কার্যকর ভর হিসেবে।

Image result
চিত্রঃ জে. জে. থমসন

ব্ল্যাক বডি রেডিয়েশান বা, কৃষ্ণ বস্তুর বিকিরণ বিষয়ক ভীনের সূত্রের কথা আমরা অনেকেই শুনে থাকব। জার্মান পদার্থবিদ উইলহেল্ম ভীনও তার হিসাব নিকাশ থেকে এই একই সূত্র পেলেন। এমনকি ম্যাক্স আব্রাহামও সম্পূর্ণ নতুন ভাবে হিসাব নিকাশ করে বের করলেন যে,  । সমীকরণের এই ভর ক্ল্যাসিকাল ইলেক্ট্রনের “ইলেক্ট্রম্যাগনেটিক ভর” হিসেবে পরিচিত হয়ে গেল। যদিও এই ইলেক্ট্রো-ম্যাগনেটিক ভর পাওয়ার জন্য বস্তুকে চার্জিত এবং গতিশীল হতে হত। তাই এটা স্পষ্টতই বোঝা যাচ্ছিল যে এই সূত্রটি সকল ধরনের সাধারণ পদার্থের জন্য সত্য ছিল না। এই পুরো হিসাব নিকাশ করা হয়েছিল ক্ল্যাসিকাল ইলেক্ট্রোডায়নামিক্স আর ইথার ধারণার উপড় ভিত্তি করে।

Image result for Wilhelm Wien
চিত্রঃ উইলহেল্ম ভীন

১৯০০ সালে হেনরি পয়েনকেয়ার ইকেক্ট্রোম্যাগনেটিক ফিল্ডকে এক ধরণের তরলের মত কল্পনা করে তার জন্য  সূত্রটি বের করে ফেললেন। তিনি বললেন যে, ইলেক্ট্রোম্যাগনেটিক বিকিরণেরও ভরবেগ আছে এবং তাই অবশ্যই তার ভরও আছে। যদিও কোন বাস্তব বস্তুর ভরের সাথে শক্তির নিত্যতা দেখাতে তিনি ব্যার্থ হয়ে ছিলেন।

Image result

১৯০৩ সালের ১৬ জুন ‘অলিন্টো ডি প্রেট্ট’ নামের একজন ইটালিয়ান ব্যবসায়ী এবং ভূবিজ্ঞানী সকল ধরনের ভরের জন্য এই  সূত্রটি প্রদান করলেন। তিনি ইউরেনিয়াম এবং থোরিয়ামের তেজস্ক্রিয়তার ঘটনাকে ভরের শক্তিতে রুপান্তর হওয়ার ঘটনা হিসেবে সবার সামনে তুলে ধরলেন।

Image result for olinto de pretto

১৯০৪ সালে ফ্রিটজ হ্যাসেনওরল ( Fritz Hasenöhrl ) ছিলেন সেসময় অস্ট্রিয়ার প্রধান পদার্থবিদদের একজন। তিনি লুইজ বোল্টজম্যানের ছাত্রও ছিলেন।তিনি ভর আর শক্তির সম্পর্ক বোঝার জন্য একটা থট এক্সপেরিমেন্ট চালালেন। পর পর তিনটি অসাধারণ পেপার লিখলেন তিনি। পেপারগুলো ছিল গতিশীল বস্তুর বিকিরণ বিষয়ক। ১৯০৪ আর ১৯০৫ সালে তার এ বিষয়ক দুটি পেপার অ্যানালেন ডার ফিজিকে প্রকাশিত হয়। এটি সেই জার্নাল যেখানে ১ বছর পরে আইনস্টাইন তার  বিষয়ক পেপারটি প্রকাশ করেছিলেন।

Image result for Fritz Hasenöhrl
চিত্রঃ ফ্রিটজ হ্যাসেনওরল

ফ্রিটজ হ্যাসেনওরল তার এই প্রথম দুটি পেপারে কৃষ্ণ বস্তুর বিকিরণের ভর নির্ণয় করলেন ,   । যার অর্থ  পরবর্তিতে ম্যাক্স আব্রাহামের সাথে কথা বলার পর তিনি তার হিসাব নিকাশে গাণিতিক কিছু ভুল খুঁজে পান। তার সংশোধিত তৃতীয় পেপারে তিনি শক্তির মান বের করলেন 

এরপরই ১৯০৫ সালে স্পেশাল থিওরি অভ রিলেটিভিটির বিখ্যাত পেপারে আইনস্টাইন দেখালেন যে,  । যদিও তার পেপারে তিনি মূলত প্রথমে স্পেশাল রিলেটিভিটি ব্যবহার করেই শু্রু করেছিলেন, কিন্তু শেষ পর্যন্ত কিছু সীমাবদ্ধতা টেনে ক্ল্যাসিকাল পদার্থবিজ্ঞানেই প্রবেশ করেছিলেন। ১৯০৭ সালে ম্যাক্স প্লাঙ্ক নতুন করে এই সূত্রটি প্রমাণ করলেন এবং উল্লেখ করলেন যে আইনস্টাইনের কাজে ধারণাগত এবং গাণিতিক দিক থেকে বেশ কিছু সীমাবদ্ধতা ছিল।

Image result for einstein

সুতরাং আমরা দেখলাম যে আইনস্টাইন আসলে রাতারাতি  এই সূত্রটি দিয়ে দিয়েছিলেন বিষয়টা কিন্তু এমন ছিল না। তারও আগে অনেক বিজ্ঞানীই বিষয়টি নিয়ে কাজ করেছিলেন। এছাড়াও আইনস্টাইনের প্রমাণেও বেশ কিছু সীমাবদ্ধতা ছিল যা তিনি এড়িয়ে গিয়েছিলেন। তারপরও তার স্পেশাল রিলেটিভিটি ভর আর শক্তির সম্পর্ক স্থাপনে বেশ গুরুত্বপূর্ণ ভূমিকা রেখেছিল। তাই স্পেশাল রিলেটিভিটির জনক হিসেবে ভর শক্তির নিত্যতা সূত্র এ আইনস্টাইনের অবদান আসলে অনস্বীকার্য।

 

অভ্যাসের শক্তি ও অবিশ্বাস্য রহস্যময়তা

মানুষ অভ্যাসের দাস। এ কথা সবাই জানি। আমরা যদি নিজেদের জীবনের দিকে তাকাই, তাহলে নিশ্চয়ই খুঁজে পাবো এমন কিছু অভ্যাস আছে যা আমাদের উপকার করছে। পাশাপাশি এমন কিছু অভ্যাস আছে যা আমাদের ক্ষতি করছে। এর পাশাপাশি হয়তো নতুন কোনো অভ্যাস গড়ে তুলতে চেষ্টা করেছি, কিংবা বাজে কোনো অভ্যাস থেকে মুক্তি পেতে চেষ্টা করেছি। হয়তো সফল হতে পেরেছি, কিংবা হতে পারিনি।

কখনো কি নিজেদের অভ্যাসগুলোর মধ্যেকার প্যাটার্ন খুঁজতে চেষ্টা করেছি? যে অভ্যাসের আমরা দাস সেই বিষয়টা নিয়ে খুব করে ভেবেছি কি? নাকি মেনেই নিয়েছি এই দাসত্ব থেকে বের হবার উপায় নেই?

আপনি-আমি না ভাবলেও অনেকেই ভাবে। অনেক গুরুত্বপূর্ণ মানুষেরা ভাবে। ভালো ভালো কোম্পানিগুলোর হর্তাকর্তারা শুধু ভাবেনই না, মোটা অংকের টাকাও ঢালেন প্রাতিষ্ঠানিক পর্যায়ে অভ্যাস নিয়ে গবেষণা করার জন্য।

এখানে একজন মানুষের গল্প বলবো। তার নাম ইউজিন পলি। স্মৃতিভ্রংশ (Amnesia) আক্রান্ত যত কেস আছে তার মধ্যে খ্যাতির দিক দিয়ে তিনি দ্বিতীয়। তবে ইউজিনের জীবনের ঘটে যাওয়া ঘটনাগুলো তার এবং তার পরিবারের জন্য দুঃখজনক। তবে সেসব ঘটনাগুলোই বৈপ্লবিক পরিবর্তন বয়ে এনেছে স্মৃতি ও অভ্যাস নিয়ে আমাদের চিন্তাধারায়।

তখন ১৯৯৩ সাল। ৭০ বছর বয়স্ক, অবসরপ্রাপ্ত ল্যাব টেকনিশিয়ান ইউজিন পলি ও তার স্ত্রী বেভারলি এক সন্ধ্যায় ডিনার করছিলেন। সবকিছুই ঠিকঠাক ছিল, যখন বেভারলি জানালেন যে পরের দিন তাদের সন্তান মাইকেল দেখা করতে আসছে তখন ইউজিন একটু উদ্ভট আচরণ দেখালেন। তিনি যেন মনে করতে পারছিলেন না তাদের কোনো সন্তান আছে।

পরের দিন ইউজিন বমি এবং পেটে ব্যথা নিয়ে অসুস্থ হয়ে পড়েন। ২৪ ঘণ্টায় তার পানিশূন্যতা মারাত্মক আকার ধারণ করলে শঙ্কিত বেভারলি তাকে হাসপাতালে নিয়ে ছুটলেন। ইউজিনের দেহের তাপমাত্রা বাড়তে বাড়তে ১০৫ ডিগ্রি ফারেনহাইটে ঠেকলো আর তার হলুদাভ ঘামে ভিজে যাচ্ছিলো শুভ্র বিছানার চাদর। ইউজিন বিকারগ্রস্ত ও হিংস্র হয়ে পড়লে তাকে শান্ত রাখা কঠিন হয়ে যায়। বহু কষ্টে চেতনা নাশক প্রয়োগ করে শান্ত করলেন। এরপর ডাক্তাররা তার মেরুদণ্ডের ভেতর নিডল ঢুকিয়ে কয়েক ফোটা সেরেব্রোস্পাইনাল ফ্লুইড সংগ্রহ করেন।

পরীক্ষা করে দেখা যায় ইউজিন ভাইরাল এনসেফালাইটিসে আক্রান্ত। এনসেফালাইটিস ঘটায় এক প্রায় নিরীহ ভাইরাস হার্পিস সিমপ্লেক্স। বেশিরভাগ ক্ষেত্রেই এরা জ্বর-ঠোসা কিংবা ত্বকের ফুসকুড়ি বেশি ক্ষতি করতে পারে না। যদিও অত্যন্ত বিরল, তারপরেও এই ভাইরাস যদি রক্তে ভেসে ভেসে কোনোক্রমে মাথায় পৌঁছে যায় তাহলে মগজের সুস্বাদু ব্রেইন টিস্যু খেতে থাকে। যে টিস্যুতে আমাদের ভাবনা, স্মৃতি, স্বপ্ন, দক্ষতা ইত্যাদি সবকিছুই অবস্থান করে।

চিত্র: হার্পিস সিমপ্লেক্স সাধারণত জ্বর-ঠোসা-ফুসকুড়ির বেশি ক্ষতি করতে পারে না।

ডাক্তাররা তার সুস্থ হয়ে ফিরে আসা সম্পর্কে সন্দিহান ছিলেন। কিন্ত তারপরেও উচ্চ মাত্রার এন্টিভাইরাল প্রয়োগ করে ভাইরাসের সংক্রমণ রুখে দিয়ে বিস্তার এই আক্রমণ ঠেকানো গেলো। কিন্তু যে ক্ষতি ইতোমধ্যে হয়ে গেছে তা আর ফেরানো যায়নি। ব্রেইন স্ক্যানে ধরা পড়ে মগজের মধ্যভাগে এক অশুভ ছায়া। ক্র্যানিয়াম এবং স্পাইনাল কলাম যেখানে মিলিত হয় সেখানের অনেকখানি টিস্যু ভাইরাস ধ্বংস করে দিয়েছে।

যখন জ্ঞান ফিরল তখন ইউজিন বেশ দুর্বল। কথা জড়িয়ে যাচ্ছিল। মনে হচ্ছিল, শ্বাস নিতেও যেন কষ্ট হচ্ছে। তবে ধীরে ধীরে অবস্থা ভালো হলো। তিনি স্বাভাবিক মানুষের মতোই চলাফেরা করতে শুরু করলেন। কিন্তু, তিনি বুঝতে পারছিলেন না সপ্তাহের কোন দিন এটি। কিংবা ডাক্তার ও নার্সদের নাম বারবার বলার পরও কেন তাদের নাম মনে রাখতে পারছিলেন না। এমনকি তাদের সাথে যে পরিচয় হয়েছে সেটাও তার স্মৃতিতে নেই।

বাড়িতে নিয়ে আসার পর আরও অদ্ভুত সমস্যা দেখা গেলো। ইউজিন তার বন্ধুদের কথা ভুলে গেছেন। তিনি কথোপকথন চালিয়ে নিতে পারছিলেন না। কোনো কোনো সকালে তার ঘুম ভেঙ্গে যেত। উঠে রান্নাঘরে গিয়ে বেকন আর ডিম খেতেন। তারপর আবার বিছানায় শুয়ে মাথা চাদরের নিচে ঢুকিয়ে রেডিও চালিয়ে দিতেন। কিছু সময় পর তিনি আবার একইভাবে রান্নাঘরে গিয়ে বেকন আর ডিম খেয়ে বিছানায় গিয়ে চাদরে মাথা মুড়ে রেডিও শুনতেন। একই কাজ এভাবে বেশ কয়েকবার চলতো।

ঘটনায় শঙ্কিত হয়ে পড়েন বেভারলি। তিনি ইউজিনকে নিয়ে ছুটলেন বিশেষজ্ঞদের কাছে। তার মধ্যে একজন হলেন ইউনিভার্সিটি অব ক্যালিফোর্নিয়ার প্রফেসর ল্যারি স্কুইর। স্মৃতির নিউরো এনাটমি নিয়ে এই বিজ্ঞানীর তখন ৩ দশকের কাজ করার অভিজ্ঞতা আছে। মস্তিষ্ক কীভাবে বিভিন্ন ঘটনার স্মৃতি ধারণ করে এই ব্যাপারে তার আগ্রহও ছিল বেশ। ইউজিন পলিকে নিয়ে ল্যারি স্কুইরের কাজ অচিরেই তার নিজের কাছে নতুন জগতের উন্মোচন করলো। পাশাপাশি অন্যান্য বিজ্ঞানীদের জন্যও হয়ে উঠলো নতুন দুয়ার।

‘অভ্যাস’ জিনিসটা কত শক্তিশালী, আর কতটা গভীরে অভ্যাসের অনুরণন- এই ব্যাপারগুলো নাড়িয়ে দিয়েছিল বিজ্ঞানীদেরকে। স্কুইরের কাজ এটাই প্রমাণ করেছিল, নিজের নাম ও বয়সের মতো তথ্যও মনে রাখতে পারে না এমন কারো পক্ষেও জটিল কোনো অভ্যাস গড়ে তোলা সম্ভব।

চিত্র: ল্যারি স্কুইর

চিকিৎসার সময় বিশেষজ্ঞ স্কুইর রোগী ইউজিনের সাথে কথাবার্তা শুরু করলেন তার যুবক বয়সের কথা জানতে চেয়ে। তিনি স্বাভাবিকভাবেই বলে গেলেন সেন্ট্রাল ক্যালিফোর্নিয়ার যে শহরে তিনি বড় হয়েছেন তার কথা। মার্চেন্ট মেরিন থাকার সময়ে অস্ট্রেলিয়ায় সফরের কথা। জীবনের বেশিরভাগ স্মৃতিই মনে করতে পারছেন যেগুলো ১৯৬০ এর আগে ঘটেছিল।

যখন স্কয়ার এর পরের কোনো সময়ের কথা জানতে চাইছিলেন তখন ইউজিন বিনয়ের সাথে বলছিলেন “দুঃখিত, সাম্প্রতিক ঘটনাগুলো মনে করতে আমার সমস্যা হয়।”

প্রফেসর তার বুদ্ধিমত্তার কিছু পরীক্ষা নিলেন, দেখা গেল তিনি সেসবে বেশ ভালো করলেন। যেসব স্বাভাবিক অভ্যাস অনেক আগেই গড়ে উঠেছিল সেসবও তার মধ্যে ভালোভাবেই ছিল। যেমন স্কুইর যখন তাকে পানির গ্লাস এগিয়ে দিলেন, তিনি ধন্যবাদ দিয়েছিলেন। প্রফেসর যখন ইউজিনের কোনো উত্তরে খুশি হয়ে প্রশংসা করছিলেন তিনিও প্রতিউত্তরে প্রশংসা করছিলেন।

নতুন কারো সাথে দেখা হলে তিনি নিজেই আগে পরিচয় দিয়ে দিনটি কেমন কাটল জিজ্ঞেস করছিলেন। কিন্তু স্কুইর যখন তাকে একটা সংখ্যার সিরিজ মুখস্থ করতে দিচ্ছিলেন, অথবা ঘরের বাইরের হলওয়ের স্কেচ আঁকতে বলছিলেন, তা তিনি পারছিলেন না। আসলে নতুন কোনো তথ্যই তার মাথায় মিনিট খানেকের বেশি থাকতো না।

সবচেয়ে দুঃখজনক যে তার অসুস্থতা কিংবা ঐ সময়ে হাসপাতালে থাকা সংক্রান্ত কোনো স্মৃতিই মনে নেই। আসলে তার নিজের যে মানসিক প্রতিচ্ছবি ছিল তাতে কোনো অসুস্থতা বা স্মৃতিভ্রষ্টতা সংক্রান্ত তথ্য নেই। সে কারণে তার সমস্যা কী সেটাও তিনি বুঝতে পারেননি। তিনি সবসময় নিজেকে সুস্থই ভাবতেন। মৃত্যুর আগ পর্যন্ত তিনি ভেবে গেছেন তার বয়স ৬০ বছর। অথচ তিনি আক্রান্তই হয়েছিলেন ৭০ বছর বয়সে।

মাস খানেক পর ইউজিন ও বেভারলি তাদের বসবাসের জায়গা বদলিয়ে স্যান ডিয়াগোতে চলে আসেন। সেসময় প্রায়ই প্রফেসর স্কুইর তথ্য নিতে ঐ বাসায় যেতেন। একদিন স্কুইর ইউজিনকে বললেন তাদের নতুন বাসার কোনো ঘর কোথায় আছে সেটার একটা ব্লু-প্রিন্ট এঁকে দিতে। তিনি সেটা করতে পারলেন না। এরপর স্কুইর তার কম্পিউটারে কাজে মন দিলেন। ইউজিন তখন উঠে গিয়ে বাথরুমে গেলেন। সেখান থেকে ফ্ল্যাশের শব্দও এলো। কাজ সেরে টাওয়েলে হাত মুছে তিনি ফিরেও এলেন স্কয়ারের পাশে।

সেই সময়ে কেউই ভাবেনি, একটি মানুষ তার বাসার কোন রুম কোথায় আছে সেটা এঁকে দেখাতে পারে না কিন্তু একা একাই বাথরুম করে আসতে পারছে কোনো সমস্যা ছাড়াই। এরকম ঘটনা এবং কাছাকাছি এধরনের আরো কিছু জিজ্ঞাসাই পরবর্তীতে এমন কিছু আবিষ্কারের রাস্তা খুলে দিয়েছিল যার মাধ্যমে অভ্যাসের শক্তি সম্পর্কে মানুষ বুঝতে পেরেছে।

স্যান ডিয়াগোতে আসার প্রথম কয়েক সপ্তাহ বেভারলি নিজেই ইউজিনকে দুই বেলা করে হাঁটতে নিয়ে যেতেন। ডাক্তারদের নির্দেশনা ছিল যে তার চলাফেরা ও ব্যায়ামের দরকার। তাছাড়া ঘরে থাকলে বারবার একই প্রশ্ন করে করে তিনি বেভারলিকে পাগল করে দিতেন। যেহেতু তিনি সবই কয়েক মিনিটের মধ্যে ভুলে যান, তাই সবসময় বাইরে তার সঙ্গী কেউ একজন থাকতে হবে। নয়তো তিনি হারিয়ে গেলে হয়তো আর ফিরে আসতে পারবেন না।

কিন্তু এক সকালে বেভারলি তৈরি হবার আগেই ইউজিন বেরিয়ে যান। একা একা। টের পেলে বেভারলির মাথায় যেন আকাশ ভেঙ্গে পড়লো। তিনি পাগলের মতো এখানে সেখানে খুঁজে যখন পেলেন না তখন পুলিশকে জানিয়ে ক্লান্ত হয়ে ঘরে ফিরলেন। দেখা গেল ইউজিন ঘরে বসে আছেন, তার সামনে টেবিলে একটা পাইন-কোন রাখা।

পরবর্তীতে বুঝা গেল যে ইউজিনের যদিও ধারণা নেই তিনি কোথায় থাকেন, তারা বাড়ি কোনোটি। কিন্তু বেভারলির সাথে সকাল বিকাল হাঁটতে হাঁটতে তার অভ্যাস দাড়িয়ে গেছে যার মাধ্যমে তিনি অবচেতনেই চিনে চিনে হেঁটে আসেন ঐদিন।

বেভারলি তাকে নিষেধ করেছিলেন একা বাইরে যেতে, কিন্তু সেটা মেনে নিয়ে মনে রাখা সম্ভব হতো না। তিনি ভুলে যেতেন আর বেরিয়ে পড়তেন। শুরুতে কিছুদিন তাকে অনুসরণ করতেন যেন হারিয়ে না যান। পরে দেখা গেল না, তিনি আসলেই একা চলাফেরা করতে পারছেন। কখনো কখনো পাইন কোন, ফল, পাথর এসব নিয়ে আসতেন। একদিন ওয়ালেট আর আরেকদিন কুকুরছানাও ঘরে এনেছিলেন। কিন্তু তার স্মরণেই নেই সেসব কোথায় পেয়েছিলেন।

এই ঘটনাগুলো শোনার পর প্রফেসর স্কুইর একদিন তার সঙ্গীদের সাথে করে নিয়ে এলেন। হাঁটার সময় হলে ইউজিন তাদের একজনের সাথে হাঁটতে বের হলেন যার ওই এলাকার পথঘাট সম্পর্কে কোনো ধারণা নেই। ইউজিন নিজেই পথ দেখিয়ে ঘুরে আসলেন। যখন বাসার কাছাকাছি চলে এসেছেন তখন সেই বিজ্ঞানী জানতে চাইলেন কোনটা ইউজিনের বাসা, ইউজিন সেটা বলতে পারলেন না।

কিন্তু হাঁটতে হাঁটতে একদম ঠিক জায়গাতেই পৌঁছালেন। কিংবা ঘরের ভেতর যখন জিজ্ঞেস করা হলো রান্নাঘর কোনদিকে সেটাও তিনি বলতে পারলেন না। তবে মজার বিষয় হচ্ছে, যখন জিজ্ঞেস করা হলো ক্ষুধা লাগলে তিনি কী করতেন। দেখা গেলো তিনি উঠে গিয়ে রান্না ঘরে বয়াম থেকে খাবার বের করে নিয়ে এলেন।

এরকম আরো কিছু ঘটনার পর আর বুঝতে বাকী রইলো না যে ইউজিনের মস্তিষ্ক যদিও সচেতনভাবে কোনো নতুন তথ্য গ্রহণ করছে না কিন্তু অবচেতনভাবে ঠিকই করছে। এবং তা ব্যবহারও করছে। এরপর বেশ কিছু এক্সপেরিমেন্টের মাধ্যমে মস্তিষ্ক ও অভ্যাসের এই ব্যাপারটি প্রমাণ করা সম্ভব হয়।

এই আবিষ্কার বিজ্ঞানী মহলে মস্তিষ্কের কর্মপ্রক্রিয়া সম্পর্কে নতুন করে ভাবতে বাধ্য করে। সবাই জানতে পারলেন যে একটা বিষয়ে সিদ্ধান্ত গ্রহণ সম্পর্কে সবকিছু ভুলে গেলেও সেই অনুযায়ী অবচেতনে সিদ্ধান্ত গ্রহণ সম্ভব। ইউজিন এবং স্কুইর আমাদের দেখালেন যে স্মৃতি এবং বোধের সাথে সাথে অভ্যাসও আমাদের আমাদের আচরণের মূল ভিত্তি গঠন করে।

আমাদের হয়তো মনে না-ও থাকতে পারে কীভাবে বা কী কারণে কোনো একটা অভ্যাস আমরা গড়ে তুলেছি। কিন্তু একবার সেগুলো নিউরনে সংরক্ষিত হয়ে গেলে, তা আমাদের আচরণকে প্রভাবিত করে, আমাদের অজান্তেই।

ইউজিনকে নিয়ে স্কুইরের গবেষণাপত্রটি প্রকাশ হবার পরে অভ্যাস গঠনের বিজ্ঞান পরিণত হল গুরুত্বপূর্ণ চর্চার বিষয়ে। ডিউক, হার্ভার্ড, প্রিন্সটনের মতো বিশ্ববিদ্যালয়ের পাশাপাশি প্রোক্টর এন্ড গ্যাম্বল, গুগল, মাইক্রোসফট সহ বড় বড় প্রতিষ্ঠানে কর্মরত বিজ্ঞানীরা অভ্যাসের নিউরোলজি এবং সাইকোলজি, এর শক্তি ও দুর্বলতা, কীভাবে অভ্যাস তৈরি হয় এবং নিজেদের কাজে লাগানো যায় সেসব বুঝার জন্য শ্রম দেয়া শুরু করলেন।

সব অভ্যাসেই তিনটা স্তর আছে। Cue-Routine-Reward। গবেষকরা জানতে পারলেন Cue হতে পারে যেকোনো কিছুই। হতে পারে সেটা টসটসে ক্যান্ডি বার, টেলিভিশনের বিজ্ঞাপন, কোনো বিশেষ জায়গা, দিনের কোনো একটি সময়, আবেগ, চিন্তার ক্রম কিংবা বিশেষ কোনো মানুষের সাহচর্য। Routine হতে পারে প্রার্থনার মতো জটিল কিংবা বাটন চাপার মতো সহজ কোনো কাজ। আবার Reward ও হতে পারে কোনো খাবার বা রাসায়নিক যেটা দেহে বিশেষ অনুভূতি সৃষ্টি করে, কিংবা গর্ব অথবা আত্মতুষ্টির মতো আবাগীয় প্রণোদনা।

পরবর্তী প্রতিটা এক্সপেরিমেন্টই ইউজিনের সাথে স্কুইরের আবিষ্কার প্রতিধ্বনিত হয়েছে। অভ্যাস অনেক শক্তিশালী, কিন্তু বেশ সূক্ষ্ম। তারা আমাদের সচেতনতার বাইরে তৈরি হতে পারে, অথবা তাদেরকে সুচারুভাবে সাজিয়ে নেয়া যেতে পারে। যতটা আমরা ভাবছি তারচেয়েও জোরালোভাবে আমাদের জীবন অভ্যাস দিয়ে নিয়ন্ত্রিত। তারা এতটাই আগ্রাসী যে আমাদের মগজ এমনকি কমন সেন্স বাদ দিয়ে হলেও এদেরকে মেনে চলে।

আক্রান্ত হবার ৭ বছর পর, ২০০০ সালে ইউজিনের জীবনে একধরনের ভারসাম্য আসে। তিনি প্রতিদিন সকালে হাঁটতে বেরুতেন। যা ভালো লাগতো খেতেন, কখনো কখনো দিনে ৬ বারও তার আহার হয়ে যেতো। ডাক্তার তার স্বাস্থ্যের কথা চিন্তা করে খাদ্যাভ্যাস নিয়ন্ত্রণের পরামর্শ দিলেও কাজ হয়নি। হবে কীভাবে? কেউ নিষেধ করলেও তো তা তিনি কয়েক মিনিট পরই ভুলে যেতেন। তার স্ত্রী স্কুইরের সাথে পরামর্শ করে চেষ্টা করতেন সবজি জাতীয় খাবার রুটিনে ঢুকাতে।

ইউজিনের দেহ বৃদ্ধ হলেও তিনি নিজেকে ভাবতেন ২০ বছর কম বয়সী। তাই চলাফেরায় যতটা সাবধানতা দরকার, তা তিনি আনতে পারেননি। তার স্বাস্থ্য ভালো রাখার নানা রকম চেষ্টা করা হলেও পরে খারাপ হতে থাকে। এক সকালে প্রচণ্ড বুকে ব্যথা নিয়ে তিনি চিৎকার করতে থাকেন। হাসপাতালে নেয়ার পর বোঝা গেল এটি ছোটখাটো একটা হার্ট অ্যাটাক।

তাৎক্ষণিক চিকিৎসায় যখন ব্যথা সেরে গেল তখন তিনি বার বার বিছানা ছেড়ে উঠে যেতে চাইলেন। দেহের সাথে যুক্ত প্রোবগুলো খুলে ফেলতে চাইলেন যাতে তিনি উপুড় হয়ে ঘুমাতে পারেন। ডাক্তার এবং নার্সদের অনুনয়, বিনয়, হুমকি কিছুতেই কাজ হচ্ছিল না।

একসময় তার মেয়ে বুদ্ধি দিলেন, যদি তার স্থির থাকাকে প্রশংসা করা হয়, কিংবা বুঝানো হয় তিনি ডাক্তারদের সহায়তা করে বেশ গুরুত্বপূর্ণ অবদান রাখছেন তাহলে কাজ হতে পারে। হ্যাঁ, তাতে কাজ হয়েছিল। এর পরের কয়েকদিন নার্সরা তাকে যেটাই বলতেন সেটাই ইউজিন শুনতেন। কিছুদিন পরে তিনি সুস্থ হয়ে বাড়ি ফিরলেন।

২০০৮ সালে আরেক অঘটন ঘটলো। ফায়ারপ্লেসের পাশে রাখা খড়িতে হোঁচট খেয়ে পড়ে গিয়ে কোমর ভেঙ্গে গেলো। তাকে আবার হাসপাতালে যাওয়া লাগলো। স্কুইর এবং তার দল চিন্তিত হয়ে গেলেন। ইউজিন হয়তো হাসপাতালে নিজেকে একা দেখে ভয় পেয়ে উত্তেজিত হয়ে যেতে পারে। তাই তারা বিছানার পাশে তার কী হয়েছিল, কীভাবে হয়েছিল এসব সম্পর্কে নোট রাখতেন।

তবে এবার ইউজিন বেশ শান্ত থাকলেন। তিনি যে সবকিছু সবসময় বুঝবেন না, এই বিষয়টাতে হয়তো তার মন অভ্যস্ত হয়ে গিয়েছিল। বেভারলি তখন প্রতিদিন যেতেন হাসপাতালে।

তিনি বলেন “তাকে বলতাম আমি কতটা ভালোবাসি। আমাদের জীবন কত সুন্দর। পরিবারের অন্যদের ছবি দেখাতাম। তাকে জানাতাম সবাই তাকে কত পছন্দ করে। আমাদের ৫৭ বছরের বিবাহিত জীবনে ৪২ বছর ছিল স্বাভাবিক। কখনো কখনো এটা খুব কষ্টকর হয়ে যেতো, আমি পুরনো ইউজিনকে ফিরে পেতে চাইতাম। কিন্তু, অন্তত সে আনন্দে আছে ভেবে শান্তি পেতাম।”

এক বিকেলে তার মেয়ে ক্যারোল আসলেন দেখা করতে। তিনি ইউজিনকে সাথে নিয়ে হাসপাতালের লনে বেড়াতে গেলেন। অনেক্ষন ঘুরাঘুরি, গল্পসল্প করার পর সন্ধ্যা হয়ে যাচ্ছিল দেখে ক্যারল ইউজিনকে ভেতরে নেবার প্রস্তুতি শুরু করলেন। তখন ইউজিন আচমকা বলে বসলেন ‘তোমার মতো কন্যা পেয়ে আমি ভাগ্যবান’। একথা শুনে ক্যারল হতবাক হয়ে যান। তার বাবা শেষ কবে এত মিষ্টি করে কিছু বলেছিলেন তা তো তিনি ভুলেই গিয়েছিলেন।

সেই রাতে যখন একটা বাজে তখন বেভারলির ফোন বেজে উঠে। ওপাশ থেকে জানানো হল ইউজিন চিরতরে বিদায় নিয়েছেন। তার বিদায়ে বিজ্ঞানীমহল মর্মাহত, ইউজিনকে নিয়ে গবেষণা, তার ব্রেইন স্ক্যান, তার জীবনযাপন বহু বিজ্ঞানীকে উপকৃত করেছে এবং করবে। বেভারলি বলেছিলেন “বিজ্ঞানে ইউজিনের অবদান তাকে গর্বিত করে। আমাদের বিয়ের পরপরই ইউজিন বলেছিল যে সে জীবনে অর্থপূর্ণ কিছু করতে চায়, এবং সে তা করেছিল। কিন্তু আফসোস, সে কোনোদিন তা জানতেও পারেনি।”

ইউজিন পলির সমাধিস্থল

তথ্যসূত্র

Charles Duhigg রচিত The Power of Habit থেকে অনুপ্রাণিত

টেকসই এবং সাশ্রয়ী ব্যাটারী তৈরিতে নতুন পদার্থের সন্ধান

শক্তির চাহিদা উত্তরোত্তর লাফিয়ে বেড়ে চলেছে বিশ্বব্যাপী। প্রযুক্তি, প্রযুক্তিপণ্য এসব কেবল সামগ্রিক চাহিদার অংশ এখন। শক্তির চাহিদা মেটাতে গবেষকদের ঘাম ছুটে যাচ্ছে চাহিদার গতির সাথে পাল্লা দিয়ে আবিষ্কারে ডুব দিতে। শক্তির মোবিলিটির উপর সাথে ব্যাটারির সম্পর্ক সবচেয়ে জোরালো।

সুইজারল্যান্ডের ইটিএচ জুরিখ (ETH Zurich) এবং একই দেশের বস্তু বিজ্ঞানের গবেষণা প্রতিষ্ঠান এম্পার গবেষণায় বিজ্ঞানীরা টেকসই ব্যাটারি আবিষ্কারের চেষ্টা করে যাচ্ছেন। এমন অজৈব উপাদান যা কিনা আবার সাশ্রয়ীও হবে। গবেষকরা দুটি নতুন পদার্থ শনাক্ত করতে পেরেছেন যা অ্যালুমিনিয়ামের ব্যাটারির উন্নয়নে কাজে লাগতে পারে। প্রথমটি হল একটি ক্ষয়-রোধী পদার্থ; দ্বিতীয়টি সম্পূর্ণ নতুন ধরনের পদার্থ যা ব্যাটারির ধনাত্মক প্রান্তের জন্য যা প্রযুক্তিগত প্রয়োজনের সাথে খাপ খাওয়াতে পারবে।

সক্রিয় তড়িৎবিশ্লেষ্য প্রবাহী পদার্থ

অ্যালুমিনিয়াম ব্যাটারিতে তড়িৎবিশ্লেষ্য প্রবাহী পদার্থ অধিক সক্রিয়তা প্রদর্শন করে। আর স্টেইনলেস স্টিলের ক্ষয়ও ঘটায়, এমনকি দেখা গেছে সোনা এবং প্লাটিনামের ক্ষেত্রেও ক্ষয় করে। বিজ্ঞানীরা তাই ব্যাটারির এই পরিবাহী অংশের জন্য ক্ষয় প্রতিরোধী পদার্থ সন্ধান করছেন। টাইটেনিয়াম নাইট্রাইড (TiN) যা কিনা সিরামিক বা চীনামাটির এক ধরনের পদার্থ। দেখা গেছে, এটি যথেষ্ঠ পরিবাহিতা প্রদর্শন করে। যেহেতু টাইটেনিয়াম এবং নাইট্রোজেন দুটোরই যথেষ্ট প্রাচুর্যতা রয়েছে তাই উৎপাদনেও খরচের দিক থেকে সাশ্রয়ী হবে।

ছবিঃ টাইটেনিয়াম নাইট্রাইড খুলে দিতে পারে টেকসই ব্যাটারির নতুন দুয়ার; Source: mechatronicsly.com

কভালেঙ্কোর দল সফলভাবে গবেষণাগারে টাইটেনিয়াম নাইট্রাইডের তৈরি পরিবাহী অংশ দিয়ে অ্যালুমিনিয়াম ব্যাটারি তৈরি করেছে। এই পদার্থটি খুব সহজেই পাতলা স্তরের আকারে উৎপাদন করা যায়। আবার অন্যান্য পদার্থের উপর সহজে পলিমার ফয়েলের মত আবরণ বা প্রলেপ সৃষ্টি করা যায়। কভেলেঙ্কো মনে করেন, পরিবাহী পদার্থ প্রচলিত বা সুলভ ধাতুগুলো থেকেই উৎপাদন করা সম্ভব। টাইটেনিয়াম নাইট্রাইড যে কেবল অ্যালুমিনিয়াম ব্যাটারির ক্ষেত্রেই কাজে লাগবে তা নয়, এটি ম্যাগনেসিয়াম বা সোডিয়াম ব্যাটারি এমনকি উচ্চ ভোল্টেজের লিথিয়াম আয়ন ব্যাটারির ক্ষেত্রেও ব্যবহার করা যেতে পারে।

গ্রাফাইটের বিকল্প

দ্বিতীয় নতুন পদার্থটি ব্যবহার করা যাবে অ্যালুমিনিয়াম ব্যাটারির ধনাত্মক প্রান্তের ইলেক্ট্রোড বা তড়িৎদ্বার হিসেবে। সাধারণত যে ব্যাটারির ঋণাত্মক তড়িৎদ্বার অ্যালুমিনিয়ামের তৈরি সেটির ধনাত্মক তড়িৎদ্বার সাধারণত হয় গ্রাফাইটের। কভেলেঙ্কোর দল বের করেছেন পলিপাইরিন (Polypyrene) নামের এক পদার্থ যা মূলত হাইড্রোকার্বনের জাত পলিমার।গ্রাফাইটের চেয়ে ব্যাটারিতে এটি অধিক শক্তি সঞ্চয় করে রাখতে সক্ষম। পরীক্ষণ থেকে পাওয়া যায় এই পদার্থের নমুনায় এর আণবিক শিকল বিশৃঙ্খল দশায় থাকে। এই আণবিক শিকলগুলোর মাঝে প্রচুর ফাঁকা জায়গা থেকে যায়। ফলে ফাঁকা জায়গার ফায়দা নিয়ে আগের চেয়ে বড়সড় আয়ন তড়িৎবিশ্লেষ্য প্রবাহী হিসেবে প্রবেশ করানো যাবে। এতে তড়িৎদ্বারও সহজে আহিত হবে।

পলিপাইরিনের (Polypyrene) আণবিক গঠন; Source: Phys.org

পলিপাইরিন ধারণকৃত তড়িৎদ্বারের অন্যতম সুবিধা হল এটিকে সুবিধামত ব্যবহার করতে পারা। বিশেষায়িত ব্যবহারিক প্রয়োগের ক্ষেত্রে এটিকে গ্রাফাইটের চেয়ে অধিক সুবিধামত পরিবর্তন করে নেয়া যাবে। কারণ, গ্রাফাইটকে ধাতু হিসেবে ব্যবহার করা ছাড়া বিকল্প থাকে না।

যেহেতু টাইটেনিয়াম নাইট্রাইড এবং পলিপাইরিন উভয়ই নমনীয় পদার্থ তাই এদের কারণে উপযোগিতার ক্ষেত্র বাড়ছে ব্যাটারি প্রযুক্তিতে। অর্থাৎ থলের মত করেও ব্যাটারি তৈরি সম্ভব।

শক্তি রূপান্তরে ব্যাটারি

সৌরশক্তি এবং বায়ুশক্তি থেকে বিদ্যুৎ উৎপাদন উল্লেখযোগ্য হারে বাড়ছে। কিন্তু, যখন সূর্যের আলো থাকবে না– যেমন, রাতে বা কুয়াশাচ্ছন্ন, মেঘমেদুর দিনে এবং বায়ুপ্রবাহ যথেষ্ট হবে না, সে পরিস্থিতিতে নতুন প্রযুক্তির চাহিদা উঁকি দিবেই। তখন ব্যাটারি প্রযুক্তি হতে পারে একটি সমাধান শক্তি সঞ্চয় করে ব্যবহারের জন্য। তবে অবশ্যই সাশ্রয়ী, সহনশীল পর্যায়ের হতে হবে সে প্রযুক্তি। বর্তমানে লিথিয়াম আয়ন ব্যাটারির জনপ্রিয়তা রয়েছে একই সাথে হালকা অথচ কার্যকরী মাত্রায় শক্তি সংরক্ষণে করতে পারায়। কিন্তু লিথিয়াম প্রকৃতিতে সুলভ না, একারণে এটি বেশ ব্যয়বহুল। দ্বিতীয়ত বড় স্কেলে লিথিয়াম পরিবেশের জন্য ক্ষতিকারকও। তৃতীয়ত, এ বিরল মৌল খনি থেকে নিষ্কাশন করাও সহজ না যতটা সহজ অ্যালুমিনিয়াম, ম্যাগনেসিয়াম বা সোডিয়াম।

লিথিয়াম ব্যতিরেকে বাকি তিন মৌলভিত্তিক ব্যাটারি প্রযুক্তিই ভবিষ্যতের সম্ভাবনার দুয়ার বলে ভাবা হচ্ছে। ভবিষ্যতের সাথে ফারাক হল এ জাতীয় ব্যাটারি এখনো গবেষণা পর্যায়ে রয়েছে। শিল্পকারখানার দখল এখনো নিতে পারে নি। সে ফারাক হয়তো শীঘ্রই ঘুঁচে যাবে শক্তি গবেষণার প্রচেষ্টায়।

 

Phys.org অবলম্বনে।

E=mc^2 আইনস্টাইনই কি প্রথম আবিষ্কার করেছিলেন?

যদি বর্তমানে কাউকে জিজ্ঞেস করা হয় যে পৃথিবীর সবচেয়ে সুন্দর সমীকরণ কোনটা? বা, যদি পৃথিবীর সবচেয়ে জনপ্রিয় সমীকরণ খুঁজে বের করার চেষ্টা করা হয় তাহলে নিঃসন্দেহে যে সমীকরণটির কথা সবার আগে আসবে সেটি হল,  । এই সমীকরণটির পূর্বে সম্ভবত নিউটনের মহাকর্ষের সূত্রটিকেই সবচেয়ে জনপ্রিয় সূত্র হিসেবে ধরে নেয়া হত। এই সমীকরণ আমাদের বলে ভর আর শক্তি আসলে একই জিনিস। একে অপরের অন্য রুপ! এই সমীকরণ আমাদের বলে কোন সিস্টেমের শক্তি, E হলে তার পরিমাণ হবে সেই সিস্টেমের ভরের সাথে আলোর বেগের বর্গ গুন করলে যে পরিমাণ পাব ঠিক সেই পরিমাণ।  সমীকরণটির প্রমাণ আমরা অন্য কোন এক দিন দেখব। আজ দেখবো এই সমীকরণটি সৃষ্টির আগের ইতিহাস। আজ আমরা জানব যে, আইনস্টাইনই কি প্রথম এর কথা বলেছিলেন? তিনিই কি প্রথম ভর-শক্তির নিত্যতা সূত্রের কথা বলেছিলেন?

Image result

প্রকৃতপক্ষে ভর শক্তির এ নিত্যতা সূত্রের কথা ১৮৭০ সালের পর থেকেই বেশ আলোচনায় উঠে এসেছিল। এ ধরনের নিত্যতা সূত্রের কথা বলেছিলেন জে.জে. থমসনও। হ্যাঁ, ইনি সেই জে.জে. থমসন যিনি ইলেক্ট্রনের আবিষ্কার করেছিলেন। ইলেক্ট্রনের আবিষ্কারেরও বেশ আগে ১৮৮১ সালে তার ভর শক্তির নিত্যতা বিষয়ক ফলাফলটি ছিল বেশ জটিল। তার ফলাফলে বস্তুর চার্জ, ব্যাসার্ধ এমন কিছু বিষয়ের বেশ প্রভাব ছিল। কিন্তু ১৮৮৯ সালে ইংরেজ পদার্থবিদ অলিভার হেভিসাইড তার এই কাজ আরো কিছুটা সরল করে দেখালেন যে, কোন গোলাকার ইলেক্ট্রিক ফিল্ডের শক্তি আসলে,  । এখানে m কে  উল্লেখ করা হয়েছিল কার্যকর ভর হিসেবে।

Image result
চিত্রঃ জে. জে. থমসন

ব্ল্যাক বডি রেডিয়েশান বা, কৃষ্ণ বস্তুর বিকিরণ বিষয়ক ভীনের সূত্রের কথা আমরা অনেকেই শুনে থাকব। জার্মান পদার্থবিদ উইলহেল্ম ভীনও তার হিসাব নিকাশ থেকে এই একই সূত্র পেলেন। এমনকি ম্যাক্স আব্রাহামও সম্পূর্ণ নতুন ভাবে হিসাব নিকাশ করে বের করলেন যে,  । সমীকরণের এই ভর ক্ল্যাসিকাল ইলেক্ট্রনের “ইলেক্ট্রম্যাগনেটিক ভর” হিসেবে পরিচিত হয়ে গেল। যদিও এই ইলেক্ট্রো-ম্যাগনেটিক ভর পাওয়ার জন্য বস্তুকে চার্জিত এবং গতিশীল হতে হত। তাই এটা স্পষ্টতই বোঝা যাচ্ছিল যে এই সূত্রটি সকল ধরনের সাধারণ পদার্থের জন্য সত্য ছিল না। এই পুরো হিসাব নিকাশ করা হয়েছিল ক্ল্যাসিকাল ইলেক্ট্রোডায়নামিক্স আর ইথার ধারণার উপড় ভিত্তি করে।

Image result for Wilhelm Wien
চিত্রঃ উইলহেল্ম ভীন

১৯০০ সালে হেনরি পয়েনকেয়ার ইকেক্ট্রোম্যাগনেটিক ফিল্ডকে এক ধরণের তরলের মত কল্পনা করে তার জন্য  সূত্রটি বের করে ফেললেন। তিনি বললেন যে, ইলেক্ট্রোম্যাগনেটিক বিকিরণেরও ভরবেগ আছে এবং তাই অবশ্যই তার ভরও আছে। যদিও কোন বাস্তব বস্তুর ভরের সাথে শক্তির নিত্যতা দেখাতে তিনি ব্যার্থ হয়ে ছিলেন।

Image result

১৯০৩ সালের ১৬ জুন ‘অলিন্টো ডি প্রেট্ট’ নামের একজন ইটালিয়ান ব্যবসায়ী এবং ভূবিজ্ঞানী সকল ধরনের ভরের জন্য এই  সূত্রটি প্রদান করলেন। তিনি ইউরেনিয়াম এবং থোরিয়ামের তেজস্ক্রিয়তার ঘটনাকে ভরের শক্তিতে রুপান্তর হওয়ার ঘটনা হিসেবে সবার সামনে তুলে ধরলেন।

Image result for olinto de pretto

১৯০৪ সালে ফ্রিটজ হ্যাসেনওরল ( Fritz Hasenöhrl ) ছিলেন সেসময় অস্ট্রিয়ার প্রধান পদার্থবিদদের একজন। তিনি লুইজ বোল্টজম্যানের ছাত্রও ছিলেন।তিনি ভর আর শক্তির সম্পর্ক বোঝার জন্য একটা থট এক্সপেরিমেন্ট চালালেন। পর পর তিনটি অসাধারণ পেপার লিখলেন তিনি। পেপারগুলো ছিল গতিশীল বস্তুর বিকিরণ বিষয়ক। ১৯০৪ আর ১৯০৫ সালে তার এ বিষয়ক দুটি পেপার অ্যানালেন ডার ফিজিকে প্রকাশিত হয়। এটি সেই জার্নাল যেখানে ১ বছর পরে আইনস্টাইন তার  বিষয়ক পেপারটি প্রকাশ করেছিলেন।

Image result for Fritz Hasenöhrl
চিত্রঃ ফ্রিটজ হ্যাসেনওরল

ফ্রিটজ হ্যাসেনওরল তার এই প্রথম দুটি পেপারে কৃষ্ণ বস্তুর বিকিরণের ভর নির্ণয় করলেন ,   । যার অর্থ  পরবর্তিতে ম্যাক্স আব্রাহামের সাথে কথা বলার পর তিনি তার হিসাব নিকাশে গাণিতিক কিছু ভুল খুঁজে পান। তার সংশোধিত তৃতীয় পেপারে তিনি শক্তির মান বের করলেন 

এরপরই ১৯০৫ সালে স্পেশাল থিওরি অভ রিলেটিভিটির বিখ্যাত পেপারে আইনস্টাইন দেখালেন যে,  । যদিও তার পেপারে তিনি মূলত প্রথমে স্পেশাল রিলেটিভিটি ব্যবহার করেই শু্রু করেছিলেন, কিন্তু শেষ পর্যন্ত কিছু সীমাবদ্ধতা টেনে ক্ল্যাসিকাল পদার্থবিজ্ঞানেই প্রবেশ করেছিলেন। ১৯০৭ সালে ম্যাক্স প্লাঙ্ক নতুন করে এই সূত্রটি প্রমাণ করলেন এবং উল্লেখ করলেন যে আইনস্টাইনের কাজে ধারণাগত এবং গাণিতিক দিক থেকে বেশ কিছু সীমাবদ্ধতা ছিল।

Image result for einstein

সুতরাং আমরা দেখলাম যে আইনস্টাইন আসলে রাতারাতি  এই সূত্রটি দিয়ে দিয়েছিলেন বিষয়টা কিন্তু এমন ছিল না। তারও আগে অনেক বিজ্ঞানীই বিষয়টি নিয়ে কাজ করেছিলেন। এছাড়াও আইনস্টাইনের প্রমাণেও বেশ কিছু সীমাবদ্ধতা ছিল যা তিনি এড়িয়ে গিয়েছিলেন। তারপরও তার স্পেশাল রিলেটিভিটি ভর আর শক্তির সম্পর্ক স্থাপনে বেশ গুরুত্বপূর্ণ ভূমিকা রেখেছিল। তাই স্পেশাল রিলেটিভিটির জনক হিসেবে ভর শক্তির নিত্যতা সূত্র এ আইনস্টাইনের অবদান আসলে অনস্বীকার্য।

 

আইনস্টাইনের আয়না এবং স্পেশাল রিলেটিভিটির দুইটি স্বীকার্য

স্যার আলবার্ট আইনস্টাইন। সম্ভবত পৃথিবীর ইতিহাসের সবচেয়ে বিখ্যাত পদার্থবিজ্ঞানী। সবচেয়ে আলোচিত এবং মেধাবীও বলা চলে। বিজ্ঞানী মাইকেলসন আর মর্লি আলোর বেগের আপেক্ষিকতার পরীক্ষা করেছিলেন পরীক্ষাগারের, যন্ত্র পাতির সাহায্য নিয়ে। আর কিশোর আইনস্টাইন সেটা করেছিলেন তার মাথার পরীক্ষাগারে, একটি ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে। আজ আমরা সেই পরীক্ষার কথায় জানবো। তার সাথে সাথে জানবো এই থট এক্সপেরিমেন্ট থেকে কিভাবে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে যাই।

Image result for albert einstein wallpaper

তখন ১৮৯৬ সাল। আইনস্টাইনের বয়স কেবল ষোল। আইনস্টাইন তখনও মাইকেলসন আর মর্লির ইথারের পরীক্ষার বিষয়ে একদমই জানতেন না। ইথারের অস্তিত্ব যে কিছুটা সন্দেহের মুখে পড়ে গেছে তা না জেনেই আইনস্টাইন তার জীবন্ত পরীক্ষাগার, নিজের মাথায় একটি থট এক্সপেরিমেন্ট চালালেন। আইনস্টাইন নিজেই নিজেকে প্রশ্ন করলেন, “কি ঘটবে যদি আমি এখন আমার দুই হাতে একটি আয়না ধরে আলোর বেগে দৌড়াতে শুরু করি। আমি নিজে কি নিজের প্রতিচ্ছবি সেই আয়নায় দেখতে পাবো?” বলে রাখা ভাল যে, গ্যালিলিয়ান আপেক্ষিকতায় শুধু আলোর বেগ কেন, আলোর চেয়ে বেশি বেগে যাওয়ার বিষয়েও কোন রকম বিধি নিষেধ ছিল না।

বিজ্ঞানীরা আরো আগে থেকেই জানতেন যে, আলোর বেগ ৩,০০,০০ কি.মি./সেকেন্ড। কিন্তু কার সাপেক্ষে আলোর এই বেগ? এ প্রশ্নের উত্তর দেয়ার জন্য তারা ইথারের ধারণার অবতারণা করেছিলেন। অর্থাৎ, আইনস্টাইন যখন আলোর বেগে আয়না নিয়ে দৌড় দেবেন তখন আলো ইথার মাধ্যমে ৩,০০,০০০ কি.মি./সেকেন্ড বেগে আইনস্টাইনের মুখমন্ডল থেকে আইনস্টাইনের হাতে ধরে রাখা আয়নাটির দিকে যাওয়ার চেষ্টা করবে। আইনস্টাইন নিজেও আলোর বেগে সামনে এগিয়ে যাচ্ছেন। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতা অনুসারে আলো আর আইনস্টাইনের বেগ সমান বলে আলো কখনই আইনস্টাইনের মুখমন্ডল থেকে আয়নায় পৌঁছাতে পারবে না।

এ পর্যন্ত বুঝতে কারো সমস্যা হওয়ার কথা নয়। এবার আমরা মনে করি দেখি যে, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্যটিতে কি বলা হয়েছিল। এই স্বীকার্য আমাদের বলেছিল যে, “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়”। যার অর্থ আমরা যদি একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি বস্তু বিবেচনা করি তাহলে আমরা কোনভাবেই বলতে পারব না যে কে গতিশীল আছে আর কে স্থির আছে।

চলুন, এখন আবার আইনস্টাইনের থট এক্সপেরিমেন্টে ফিরে যাই। আইনস্টাইনের থট এক্সপেরিমেন্ট থেকে এই বিষয়টি নিশ্চিত যে, আলোর বেগে আয়না নিয়ে দৌড়ালে আসলে আমাদের প্রতিবিম্ব আয়নাতে আমরা দেখতে পারবো না। ফলে নিজেদের মুখ আমরা আয়নায় দেখতে পাবো না। তাহলে কি দাঁড়ালো? একজন যদি আলোর বেগে আয়না নিয়ে দৌড় দেয় এবং আয়নায় দেখে নিজের প্রতিবিম্ব সেখানে পরছে না তখনই সে নিশ্চিতভাবে বলতে পারবে যে, সে আসলেই আলোর বেগে গতিশীল আছে। কিন্তু গ্যালিলিওর আপেক্ষিকতার স্বীকার্য আমাদের বলেছিল কোন একটি পরীক্ষা স্থির অবস্থায়ই করা হোক বা, সমবেগে গতিশীল থাকা অবস্থায়ই করা হোক না কেন একই ফলাফল দেবে। কিন্তু এই থট এক্সপেরিমেন্টে এই স্বীকার্যটি তো ভুল প্রমাণ হয়ে গেল!! তাহলে?

Image result for looking in mirror

আইনস্টাইন তার এই থট এক্সপেরিমেন্টে ইথার ধারণাটিকে প্রথমে সত্য বলে ধরে নিয়েছিলেন। অর্থাৎ, আলোর বেগ শুধু ইথারের সাপেক্ষেই সর্বদা ধ্রুব বা, ৩,০০,০০০ কি.মি./সেকেন্ড থাকে। অর্থাৎ, ইথার ধারণা সঠিক হলে গ্যালিলিওর প্রথম স্বীকার্যটি ভুল হয়ে যায়।

যদি গ্যালিলিওর প্রথম স্বীকার্যকে সত্য হতে হয় তাহলে নিজের প্রতিবিম্ব আয়নায় দেখা যেতে হবে স্বাভাবিকভাবেই। আর সেটা তখনই সম্ভব হবে যখন আলোর বেগ সকল কিছুর সাপেক্ষেই ধ্রুব বা, একই হবে। তাহলে আইনস্টাইন যদি আলোর বেগেও যান তাহলেও আলো তার সাপেক্ষে আলোর বেগেই চলবে। ফলে আলো স্বাভাবিকভাবেই আয়নায় পৌঁছাবে আর আইনস্টাইন তার মুখমন্ডল দেখতে পাবেন।

বিষয়টা আরেকটু পরিষ্কারভাবে বলা যাক। ধরি, আইনস্টাইন একটি আয়না নিয়ে স্থির দাঁড়িয়ে আছেন। তাহলে তিনি যদি এখন তার ডান হাতটি হালকা নাড়ান তবে খুব কম সময়ের মাঝে সামনের আয়নাতে তিনি তার ডান হাত নাড়ানোটি দেখতে পাবেন। এখন যদি তিনি আলোর কাছাকাছি বেগে আয়নাটি নিয়ে দৌড় দেন তবে গ্যালিলিয়ান আপেক্ষিকতা অনুসারে তার সাপেক্ষে আলোর বেগ কমে যাবে (যদি কোন গাড়ি ১০ মি./সেকেন্ড বেগে যায় আর আপনি ৫ মি./সেকেন্ড বেগে সেই একই দিকে দৌড়ান তাহলে আপনার কাছে মনে হবে গাড়ির বেগ কমে ৫ মি./সেকেন্ড হয়ে গিয়েছে। একই যুক্তিতে আলোর বেগের কাছাকাছি বেগে গেলে আপনার সাপেক্ষে আলোর বেগ কমে যাওয়ার কথা)। তাহলে ডান হাত নাড়ানোর অনেক পরে তিনি আয়নাতে তার হাত নাড়ানো দেখতে পাবেন। সময়ের এ পার্থক্য দিয়েও যে কেউ বলে ফেলতে পারবেন যে তিনি আসলে স্থির নয় বরং গতিশীল আছেন। অর্থাৎ, আপনি স্থির থাকলে আলোর বেগ আপনার কাছে যত হবে আপনি যদি আলোর কাছাকাছি বেগেও দৌড়ানো শুরু করেন তবেও আলোর বেগ আপনার সাপেক্ষে ৩,০০,০০ কি.মি./সেকেন্ডই থাকতে হবে। তবেই শুধুমাত্র গ্যালিলিওর প্রথম স্বীকার্যটিকে বাঁচানো সম্ভব হবে। আর এটি সত্য হলে আলোর বেগের ওপড় ইথারের আর কোন প্রভাব থাকে না। সুতরাং ইথার ধারণাটিও অপ্রয়োজনীয় হয়ে যায়।

অর্থাৎ, গ্যালিলিওর প্রথম স্বীকার্য এবং ইথার ধারণা এ দুটোই একই সাথে সত্য হতে পারেনা। এদের যেকোন একটাকে মিথ্যা হতেই হবে। এর আগেই মাইকেলসন-মর্লির এক্সপেরিমেন্ট থেকে আমরা দেখেছি ইথারের অস্তিত্ব প্রমাণ করা সম্ভব হয় নি। আইনস্টাইনও দেখলেন আলোর বেগকে যদি সব কিছুর সাপেক্ষে সর্বদা একই ধরে নেয়া হয় তাহলে ইথারের আর প্রয়োজন পড়ে না। এভাবেই ইথার ধারণাটি আইনস্টাইন বাতিল করে দিলেন আর গ্যালিলিওর প্রথম স্বীকার্যটিকেই নিজের স্পেশাল থিওরি অভ রিলেটিভিটিরও প্রথম স্বীকার্য বানিয়ে নিলেন। আর দ্বিতীয় স্বীকার্যতে বললেন, আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব যা আমরা উপড়ের থট এক্সপেরিমেন্ট থেকে দেখলাম।

আলোর বেগ সব কিছুর সাপেক্ষেই সর্বদা ধ্রুব এই কথাটি মেনে নিতে অনেকেরই প্রথম প্রথম অনেক কষ্ট হয়। তাই বিষয়টি আরেকটু ব্যাখ্যা করা যাক। ধরুন, পৃথিবীর মানুষ আর এলিয়েনদের মাঝে একটি যুদ্ধ শুরু হয়ে গিয়েছে। আপনি একটি স্পেস শিপ নিয়ে মহাকাশে গেলেন। একজন এলিয়েনও তাদের স্পেস শিপ নিয়ে মহাকাশে চলে গেলো। দুজনের স্পেস শিপেই কিন্তু হেডলাইটের মতো লাইট জ্বলার ব্যবস্থা আছে। হঠাৎ জ্বালানি শেষ হয়ে যাওয়াই আপনি আপনার স্পেস শিপটি নিয়ে স্থির দাঁড়িয়ে আছেন। তখনই এলিয়েন স্পেস শিপটি ২,০০,০০০ কি.মি./সেকেন্ড বেগে আপনার দিকে ছুঁটে আসল। আর আসতে আসতে ১০ কি.মি./সেকেন্ড বেগে গুলি ছুঁড়তে পারে এমন একটি বন্দুক থেকে আপনার দিকে গুলি ছুঁড়তে লাগলো। তাহলে আপনি গুলিগুলোর বেগ কত দেখবেন? নিশ্চয় উত্তর দেবেন যে, আপনি দেখবেন গুলিগুলো ২,০০,০১০ কি.মি./সেকেন্ড বেগে আপনার দিকে ধেয়ে আসছে। কারণ গ্যালিলিয়ান আপেক্ষিকতা বলে যে, গুলির বেগের সাথে স্পেস শিপের বেগ যোগ হয়ে যাবে। এখন স্পেস শিপটি যদি হঠাৎ করে তার তার হেড লাইটটি জ্বালিয়ে দেয় তাহলে কি দেখবেন? আলোর বেগ কত হবে? স্পেস শিপের বেগ + আলোর বেগ? মানে ৫,০০,০০০ কি.মি./সেকেন্ড? গ্যালিলিয়ান আপেক্ষিকতা তো তাই বলে। কিন্তু আইনস্টাইন বললেন, না। তখনও আপনি দেখবেন আলোর বেগ শুধু আলোর বেগের সমানই। মানে সর্বদাই ৩,০০,০০০ কি.মি./সেকেন্ড। এক ফোঁটা কমও নয় আবার এক ফোঁটা বেশিও নয়। এটাই আইনস্টাইনের দ্বিতীয় স্বীকার্য। এটাই সত্য!

আলোর বেগ যেভাবেই মাপা হোক না কেন তা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যায়। এ কারণেই মাইকেলসন-মর্লি যখন তাদের পরীক্ষাটি করেন তখন তাদের পরীক্ষায় সোজা পাঠানো আলো আর সমকোণে পাঠানো আলোর বেগের মাঝে কোন পার্থক্য ধরা পড়েছিলো না। পরবর্তিতেও অনেক পরীক্ষার মাধ্যমে প্রমাণিত হয়েছে যে আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে।

অর্থাৎ, দেখা গেলো আইনস্টাইনের এই ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে গেলাম। এ দুটি স্বীকার্যের উপড় ভিত্তি করেই দাঁড়িয়ে আছে আইনস্টাইনের বিশেষ আপেক্ষিকতার তত্ত্ব। তাই চলুন এ স্বীকার্য দুটি আরেকবার সুন্দর করে আমরা লিখে ফেলি। আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি হলঃ

১। “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়” (গ্যালিলিওর প্রথম স্বীকার্যের অনুরুপ)

২। আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে। আলোর বেগ যেভাবেই মাপা হোক না কেন তা সর্বদা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যাবে।

এ দুটি স্বীকার্যের উপড় ভিত্তি করে আমরা কাল দীর্ঘায়ন সম্বন্ধেও বুঝতে পারি। গ্যালিলিয়ান আপেক্ষিকতার দ্বিতীয় স্বীকার্য, যেখানে সময়কে পরম হিসেবে ধরা হয়েছিল তা যে ভুল তা আমরা আইনস্টাইনের উপড়ের দুটি স্বীকার্য থেকে পাই। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্য ঠিক হলেও দ্বিতীয় স্বীকার্যে পরম সময়ের বদলে পরম আলোর বেগ ব্যবহার করলেন আইনস্টাইন। এছাড়াও আমরা দৈর্ঘ্য সঙ্কোচন, ভর বা, ভরের আপেক্ষিকতা এবং ভর আর শক্তি যে একই জিনিস এমন অনেক কিছু আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটি থেকে পরবর্তিতে জানতে এবং বুঝতে পারি। এ বিষয়গুলো নিয়ে পরবর্তি কোন এক লেখায় কথা বলা যাবে। আজ এ পর্যন্তই। কষ্ট করে এতদূর পড়ার জন্য সকলকে ধন্যবাদ।

E=mc^2 আইনস্টাইনই কি প্রথম আবিষ্কার করেছিলেন?

যদি বর্তমানে কাউকে জিজ্ঞেস করা হয় যে পৃথিবীর সবচেয়ে সুন্দর সমীকরণ কোনটা? বা, যদি পৃথিবীর সবচেয়ে জনপ্রিয় সমীকরণ খুঁজে বের করার চেষ্টা করা হয় তাহলে নিঃসন্দেহে যে সমীকরণটির কথা সবার আগে আসবে সেটি হল,  । এই সমীকরণটির পূর্বে সম্ভবত নিউটনের মহাকর্ষের সূত্রটিকেই সবচেয়ে জনপ্রিয় সূত্র হিসেবে ধরে নেয়া হত। এই সমীকরণ আমাদের বলে ভর আর শক্তি আসলে একই জিনিস। একে অপরের অন্য রুপ! এই সমীকরণ আমাদের বলে কোন সিস্টেমের শক্তি, E হলে তার পরিমাণ হবে সেই সিস্টেমের ভরের সাথে আলোর বেগের বর্গ গুন করলে যে পরিমাণ পাব ঠিক সেই পরিমাণ।  সমীকরণটির প্রমাণ আমরা অন্য কোন এক দিন দেখব। আজ দেখবো এই সমীকরণটি সৃষ্টির আগের ইতিহাস। আজ আমরা জানব যে, আইনস্টাইনই কি প্রথম এর কথা বলেছিলেন? তিনিই কি প্রথম ভর-শক্তির নিত্যতা সূত্রের কথা বলেছিলেন?

Image result

প্রকৃতপক্ষে ভর শক্তির এ নিত্যতা সূত্রের কথা ১৮৭০ সালের পর থেকেই বেশ আলোচনায় উঠে এসেছিল। এ ধরনের নিত্যতা সূত্রের কথা বলেছিলেন জে.জে. থমসনও। হ্যাঁ, ইনি সেই জে.জে. থমসন যিনি ইলেক্ট্রনের আবিষ্কার করেছিলেন। ইলেক্ট্রনের আবিষ্কারেরও বেশ আগে ১৮৮১ সালে তার ভর শক্তির নিত্যতা বিষয়ক ফলাফলটি ছিল বেশ জটিল। তার ফলাফলে বস্তুর চার্জ, ব্যাসার্ধ এমন কিছু বিষয়ের বেশ প্রভাব ছিল। কিন্তু ১৮৮৯ সালে ইংরেজ পদার্থবিদ অলিভার হেভিসাইড তার এই কাজ আরো কিছুটা সরল করে দেখালেন যে, কোন গোলাকার ইলেক্ট্রিক ফিল্ডের শক্তি আসলে,  । এখানে m কে  উল্লেখ করা হয়েছিল কার্যকর ভর হিসেবে।

Image result
চিত্রঃ জে. জে. থমসন

ব্ল্যাক বডি রেডিয়েশান বা, কৃষ্ণ বস্তুর বিকিরণ বিষয়ক ভীনের সূত্রের কথা আমরা অনেকেই শুনে থাকব। জার্মান পদার্থবিদ উইলহেল্ম ভীনও তার হিসাব নিকাশ থেকে এই একই সূত্র পেলেন। এমনকি ম্যাক্স আব্রাহামও সম্পূর্ণ নতুন ভাবে হিসাব নিকাশ করে বের করলেন যে,  । সমীকরণের এই ভর ক্ল্যাসিকাল ইলেক্ট্রনের “ইলেক্ট্রম্যাগনেটিক ভর” হিসেবে পরিচিত হয়ে গেল। যদিও এই ইলেক্ট্রো-ম্যাগনেটিক ভর পাওয়ার জন্য বস্তুকে চার্জিত এবং গতিশীল হতে হত। তাই এটা স্পষ্টতই বোঝা যাচ্ছিল যে এই সূত্রটি সকল ধরনের সাধারণ পদার্থের জন্য সত্য ছিল না। এই পুরো হিসাব নিকাশ করা হয়েছিল ক্ল্যাসিকাল ইলেক্ট্রোডায়নামিক্স আর ইথার ধারণার উপড় ভিত্তি করে।

Image result for Wilhelm Wien
চিত্রঃ উইলহেল্ম ভীন

১৯০০ সালে হেনরি পয়েনকেয়ার ইকেক্ট্রোম্যাগনেটিক ফিল্ডকে এক ধরণের তরলের মত কল্পনা করে তার জন্য  সূত্রটি বের করে ফেললেন। তিনি বললেন যে, ইলেক্ট্রোম্যাগনেটিক বিকিরণেরও ভরবেগ আছে এবং তাই অবশ্যই তার ভরও আছে। যদিও কোন বাস্তব বস্তুর ভরের সাথে শক্তির নিত্যতা দেখাতে তিনি ব্যার্থ হয়ে ছিলেন।

Image result

১৯০৩ সালের ১৬ জুন ‘অলিন্টো ডি প্রেট্ট’ নামের একজন ইটালিয়ান ব্যবসায়ী এবং ভূবিজ্ঞানী সকল ধরনের ভরের জন্য এই  সূত্রটি প্রদান করলেন। তিনি ইউরেনিয়াম এবং থোরিয়ামের তেজস্ক্রিয়তার ঘটনাকে ভরের শক্তিতে রুপান্তর হওয়ার ঘটনা হিসেবে সবার সামনে তুলে ধরলেন।

Image result for olinto de pretto

১৯০৪ সালে ফ্রিটজ হ্যাসেনওরল ( Fritz Hasenöhrl ) ছিলেন সেসময় অস্ট্রিয়ার প্রধান পদার্থবিদদের একজন। তিনি লুইজ বোল্টজম্যানের ছাত্রও ছিলেন।তিনি ভর আর শক্তির সম্পর্ক বোঝার জন্য একটা থট এক্সপেরিমেন্ট চালালেন। পর পর তিনটি অসাধারণ পেপার লিখলেন তিনি। পেপারগুলো ছিল গতিশীল বস্তুর বিকিরণ বিষয়ক। ১৯০৪ আর ১৯০৫ সালে তার এ বিষয়ক দুটি পেপার অ্যানালেন ডার ফিজিকে প্রকাশিত হয়। এটি সেই জার্নাল যেখানে ১ বছর পরে আইনস্টাইন তার  বিষয়ক পেপারটি প্রকাশ করেছিলেন।

Image result for Fritz Hasenöhrl
চিত্রঃ ফ্রিটজ হ্যাসেনওরল

ফ্রিটজ হ্যাসেনওরল তার এই প্রথম দুটি পেপারে কৃষ্ণ বস্তুর বিকিরণের ভর নির্ণয় করলেন ,   । যার অর্থ  পরবর্তিতে ম্যাক্স আব্রাহামের সাথে কথা বলার পর তিনি তার হিসাব নিকাশে গাণিতিক কিছু ভুল খুঁজে পান। তার সংশোধিত তৃতীয় পেপারে তিনি শক্তির মান বের করলেন 

এরপরই ১৯০৫ সালে স্পেশাল থিওরি অভ রিলেটিভিটির বিখ্যাত পেপারে আইনস্টাইন দেখালেন যে,  । যদিও তার পেপারে তিনি মূলত প্রথমে স্পেশাল রিলেটিভিটি ব্যবহার করেই শু্রু করেছিলেন, কিন্তু শেষ পর্যন্ত কিছু সীমাবদ্ধতা টেনে ক্ল্যাসিকাল পদার্থবিজ্ঞানেই প্রবেশ করেছিলেন। ১৯০৭ সালে ম্যাক্স প্লাঙ্ক নতুন করে এই সূত্রটি প্রমাণ করলেন এবং উল্লেখ করলেন যে আইনস্টাইনের কাজে ধারণাগত এবং গাণিতিক দিক থেকে বেশ কিছু সীমাবদ্ধতা ছিল।

Image result for einstein

সুতরাং আমরা দেখলাম যে আইনস্টাইন আসলে রাতারাতি  এই সূত্রটি দিয়ে দিয়েছিলেন বিষয়টা কিন্তু এমন ছিল না। তারও আগে অনেক বিজ্ঞানীই বিষয়টি নিয়ে কাজ করেছিলেন। এছাড়াও আইনস্টাইনের প্রমাণেও বেশ কিছু সীমাবদ্ধতা ছিল যা তিনি এড়িয়ে গিয়েছিলেন। তারপরও তার স্পেশাল রিলেটিভিটি ভর আর শক্তির সম্পর্ক স্থাপনে বেশ গুরুত্বপূর্ণ ভূমিকা রেখেছিল। তাই স্পেশাল রিলেটিভিটির জনক হিসেবে ভর শক্তির নিত্যতা সূত্র এ আইনস্টাইনের অবদান আসলে অনস্বীকার্য।

 

E=mc^2 আইনস্টাইনই কি প্রথম আবিষ্কার করেছিলেন?

যদি বর্তমানে কাউকে জিজ্ঞেস করা হয় যে পৃথিবীর সবচেয়ে সুন্দর সমীকরণ কোনটা? বা, যদি পৃথিবীর সবচেয়ে জনপ্রিয় সমীকরণ খুঁজে বের করার চেষ্টা করা হয় তাহলে নিঃসন্দেহে যে সমীকরণটির কথা সবার আগে আসবে সেটি হল,  । এই সমীকরণটির পূর্বে সম্ভবত নিউটনের মহাকর্ষের সূত্রটিকেই সবচেয়ে জনপ্রিয় সূত্র হিসেবে ধরে নেয়া হত। এই সমীকরণ আমাদের বলে ভর আর শক্তি আসলে একই জিনিস। একে অপরের অন্য রুপ! এই সমীকরণ আমাদের বলে কোন সিস্টেমের শক্তি, E হলে তার পরিমাণ হবে সেই সিস্টেমের ভরের সাথে আলোর বেগের বর্গ গুন করলে যে পরিমাণ পাব ঠিক সেই পরিমাণ।  সমীকরণটির প্রমাণ আমরা অন্য কোন এক দিন দেখব। আজ দেখবো এই সমীকরণটি সৃষ্টির আগের ইতিহাস। আজ আমরা জানব যে, আইনস্টাইনই কি প্রথম এর কথা বলেছিলেন? তিনিই কি প্রথম ভর-শক্তির নিত্যতা সূত্রের কথা বলেছিলেন?

Image result

প্রকৃতপক্ষে ভর শক্তির এ নিত্যতা সূত্রের কথা ১৮৭০ সালের পর থেকেই বেশ আলোচনায় উঠে এসেছিল। এ ধরনের নিত্যতা সূত্রের কথা বলেছিলেন জে.জে. থমসনও। হ্যাঁ, ইনি সেই জে.জে. থমসন যিনি ইলেক্ট্রনের আবিষ্কার করেছিলেন। ইলেক্ট্রনের আবিষ্কারেরও বেশ আগে ১৮৮১ সালে তার ভর শক্তির নিত্যতা বিষয়ক ফলাফলটি ছিল বেশ জটিল। তার ফলাফলে বস্তুর চার্জ, ব্যাসার্ধ এমন কিছু বিষয়ের বেশ প্রভাব ছিল। কিন্তু ১৮৮৯ সালে ইংরেজ পদার্থবিদ অলিভার হেভিসাইড তার এই কাজ আরো কিছুটা সরল করে দেখালেন যে, কোন গোলাকার ইলেক্ট্রিক ফিল্ডের শক্তি আসলে,  । এখানে m কে  উল্লেখ করা হয়েছিল কার্যকর ভর হিসেবে।

Image result
চিত্রঃ জে. জে. থমসন

ব্ল্যাক বডি রেডিয়েশান বা, কৃষ্ণ বস্তুর বিকিরণ বিষয়ক ভীনের সূত্রের কথা আমরা অনেকেই শুনে থাকব। জার্মান পদার্থবিদ উইলহেল্ম ভীনও তার হিসাব নিকাশ থেকে এই একই সূত্র পেলেন। এমনকি ম্যাক্স আব্রাহামও সম্পূর্ণ নতুন ভাবে হিসাব নিকাশ করে বের করলেন যে,  । সমীকরণের এই ভর ক্ল্যাসিকাল ইলেক্ট্রনের “ইলেক্ট্রম্যাগনেটিক ভর” হিসেবে পরিচিত হয়ে গেল। যদিও এই ইলেক্ট্রো-ম্যাগনেটিক ভর পাওয়ার জন্য বস্তুকে চার্জিত এবং গতিশীল হতে হত। তাই এটা স্পষ্টতই বোঝা যাচ্ছিল যে এই সূত্রটি সকল ধরনের সাধারণ পদার্থের জন্য সত্য ছিল না। এই পুরো হিসাব নিকাশ করা হয়েছিল ক্ল্যাসিকাল ইলেক্ট্রোডায়নামিক্স আর ইথার ধারণার উপড় ভিত্তি করে।

Image result for Wilhelm Wien
চিত্রঃ উইলহেল্ম ভীন

১৯০০ সালে হেনরি পয়েনকেয়ার ইকেক্ট্রোম্যাগনেটিক ফিল্ডকে এক ধরণের তরলের মত কল্পনা করে তার জন্য  সূত্রটি বের করে ফেললেন। তিনি বললেন যে, ইলেক্ট্রোম্যাগনেটিক বিকিরণেরও ভরবেগ আছে এবং তাই অবশ্যই তার ভরও আছে। যদিও কোন বাস্তব বস্তুর ভরের সাথে শক্তির নিত্যতা দেখাতে তিনি ব্যার্থ হয়ে ছিলেন।

Image result

১৯০৩ সালের ১৬ জুন ‘অলিন্টো ডি প্রেট্ট’ নামের একজন ইটালিয়ান ব্যবসায়ী এবং ভূবিজ্ঞানী সকল ধরনের ভরের জন্য এই  সূত্রটি প্রদান করলেন। তিনি ইউরেনিয়াম এবং থোরিয়ামের তেজস্ক্রিয়তার ঘটনাকে ভরের শক্তিতে রুপান্তর হওয়ার ঘটনা হিসেবে সবার সামনে তুলে ধরলেন।

Image result for olinto de pretto

১৯০৪ সালে ফ্রিটজ হ্যাসেনওরল ( Fritz Hasenöhrl ) ছিলেন সেসময় অস্ট্রিয়ার প্রধান পদার্থবিদদের একজন। তিনি লুইজ বোল্টজম্যানের ছাত্রও ছিলেন।তিনি ভর আর শক্তির সম্পর্ক বোঝার জন্য একটা থট এক্সপেরিমেন্ট চালালেন। পর পর তিনটি অসাধারণ পেপার লিখলেন তিনি। পেপারগুলো ছিল গতিশীল বস্তুর বিকিরণ বিষয়ক। ১৯০৪ আর ১৯০৫ সালে তার এ বিষয়ক দুটি পেপার অ্যানালেন ডার ফিজিকে প্রকাশিত হয়। এটি সেই জার্নাল যেখানে ১ বছর পরে আইনস্টাইন তার  বিষয়ক পেপারটি প্রকাশ করেছিলেন।

Image result for Fritz Hasenöhrl
চিত্রঃ ফ্রিটজ হ্যাসেনওরল

ফ্রিটজ হ্যাসেনওরল তার এই প্রথম দুটি পেপারে কৃষ্ণ বস্তুর বিকিরণের ভর নির্ণয় করলেন ,   । যার অর্থ  পরবর্তিতে ম্যাক্স আব্রাহামের সাথে কথা বলার পর তিনি তার হিসাব নিকাশে গাণিতিক কিছু ভুল খুঁজে পান। তার সংশোধিত তৃতীয় পেপারে তিনি শক্তির মান বের করলেন 

এরপরই ১৯০৫ সালে স্পেশাল থিওরি অভ রিলেটিভিটির বিখ্যাত পেপারে আইনস্টাইন দেখালেন যে,  । যদিও তার পেপারে তিনি মূলত প্রথমে স্পেশাল রিলেটিভিটি ব্যবহার করেই শু্রু করেছিলেন, কিন্তু শেষ পর্যন্ত কিছু সীমাবদ্ধতা টেনে ক্ল্যাসিকাল পদার্থবিজ্ঞানেই প্রবেশ করেছিলেন। ১৯০৭ সালে ম্যাক্স প্লাঙ্ক নতুন করে এই সূত্রটি প্রমাণ করলেন এবং উল্লেখ করলেন যে আইনস্টাইনের কাজে ধারণাগত এবং গাণিতিক দিক থেকে বেশ কিছু সীমাবদ্ধতা ছিল।

Image result for einstein

সুতরাং আমরা দেখলাম যে আইনস্টাইন আসলে রাতারাতি  এই সূত্রটি দিয়ে দিয়েছিলেন বিষয়টা কিন্তু এমন ছিল না। তারও আগে অনেক বিজ্ঞানীই বিষয়টি নিয়ে কাজ করেছিলেন। এছাড়াও আইনস্টাইনের প্রমাণেও বেশ কিছু সীমাবদ্ধতা ছিল যা তিনি এড়িয়ে গিয়েছিলেন। তারপরও তার স্পেশাল রিলেটিভিটি ভর আর শক্তির সম্পর্ক স্থাপনে বেশ গুরুত্বপূর্ণ ভূমিকা রেখেছিল। তাই স্পেশাল রিলেটিভিটির জনক হিসেবে ভর শক্তির নিত্যতা সূত্র এ আইনস্টাইনের অবদান আসলে অনস্বীকার্য।

 

আইনস্টাইনের আয়না এবং স্পেশাল রিলেটিভিটির দুইটি স্বীকার্য

স্যার আলবার্ট আইনস্টাইন। সম্ভবত পৃথিবীর ইতিহাসের সবচেয়ে বিখ্যাত পদার্থবিজ্ঞানী। সবচেয়ে আলোচিত এবং মেধাবীও বলা চলে। বিজ্ঞানী মাইকেলসন আর মর্লি আলোর বেগের আপেক্ষিকতার পরীক্ষা করেছিলেন পরীক্ষাগারের, যন্ত্র পাতির সাহায্য নিয়ে। আর কিশোর আইনস্টাইন সেটা করেছিলেন তার মাথার পরীক্ষাগারে, একটি ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে। আজ আমরা সেই পরীক্ষার কথায় জানবো। তার সাথে সাথে জানবো এই থট এক্সপেরিমেন্ট থেকে কিভাবে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে যাই।

Image result for albert einstein wallpaper

তখন ১৮৯৬ সাল। আইনস্টাইনের বয়স কেবল ষোল। আইনস্টাইন তখনও মাইকেলসন আর মর্লির ইথারের পরীক্ষার বিষয়ে একদমই জানতেন না। ইথারের অস্তিত্ব যে কিছুটা সন্দেহের মুখে পড়ে গেছে তা না জেনেই আইনস্টাইন তার জীবন্ত পরীক্ষাগার, নিজের মাথায় একটি থট এক্সপেরিমেন্ট চালালেন। আইনস্টাইন নিজেই নিজেকে প্রশ্ন করলেন, “কি ঘটবে যদি আমি এখন আমার দুই হাতে একটি আয়না ধরে আলোর বেগে দৌড়াতে শুরু করি। আমি নিজে কি নিজের প্রতিচ্ছবি সেই আয়নায় দেখতে পাবো?” বলে রাখা ভাল যে, গ্যালিলিয়ান আপেক্ষিকতায় শুধু আলোর বেগ কেন, আলোর চেয়ে বেশি বেগে যাওয়ার বিষয়েও কোন রকম বিধি নিষেধ ছিল না।

বিজ্ঞানীরা আরো আগে থেকেই জানতেন যে, আলোর বেগ ৩,০০,০০ কি.মি./সেকেন্ড। কিন্তু কার সাপেক্ষে আলোর এই বেগ? এ প্রশ্নের উত্তর দেয়ার জন্য তারা ইথারের ধারণার অবতারণা করেছিলেন। অর্থাৎ, আইনস্টাইন যখন আলোর বেগে আয়না নিয়ে দৌড় দেবেন তখন আলো ইথার মাধ্যমে ৩,০০,০০০ কি.মি./সেকেন্ড বেগে আইনস্টাইনের মুখমন্ডল থেকে আইনস্টাইনের হাতে ধরে রাখা আয়নাটির দিকে যাওয়ার চেষ্টা করবে। আইনস্টাইন নিজেও আলোর বেগে সামনে এগিয়ে যাচ্ছেন। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতা অনুসারে আলো আর আইনস্টাইনের বেগ সমান বলে আলো কখনই আইনস্টাইনের মুখমন্ডল থেকে আয়নায় পৌঁছাতে পারবে না।

এ পর্যন্ত বুঝতে কারো সমস্যা হওয়ার কথা নয়। এবার আমরা মনে করি দেখি যে, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্যটিতে কি বলা হয়েছিল। এই স্বীকার্য আমাদের বলেছিল যে, “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়”। যার অর্থ আমরা যদি একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি বস্তু বিবেচনা করি তাহলে আমরা কোনভাবেই বলতে পারব না যে কে গতিশীল আছে আর কে স্থির আছে।

চলুন, এখন আবার আইনস্টাইনের থট এক্সপেরিমেন্টে ফিরে যাই। আইনস্টাইনের থট এক্সপেরিমেন্ট থেকে এই বিষয়টি নিশ্চিত যে, আলোর বেগে আয়না নিয়ে দৌড়ালে আসলে আমাদের প্রতিবিম্ব আয়নাতে আমরা দেখতে পারবো না। ফলে নিজেদের মুখ আমরা আয়নায় দেখতে পাবো না। তাহলে কি দাঁড়ালো? একজন যদি আলোর বেগে আয়না নিয়ে দৌড় দেয় এবং আয়নায় দেখে নিজের প্রতিবিম্ব সেখানে পরছে না তখনই সে নিশ্চিতভাবে বলতে পারবে যে, সে আসলেই আলোর বেগে গতিশীল আছে। কিন্তু গ্যালিলিওর আপেক্ষিকতার স্বীকার্য আমাদের বলেছিল কোন একটি পরীক্ষা স্থির অবস্থায়ই করা হোক বা, সমবেগে গতিশীল থাকা অবস্থায়ই করা হোক না কেন একই ফলাফল দেবে। কিন্তু এই থট এক্সপেরিমেন্টে এই স্বীকার্যটি তো ভুল প্রমাণ হয়ে গেল!! তাহলে?

Image result for looking in mirror

আইনস্টাইন তার এই থট এক্সপেরিমেন্টে ইথার ধারণাটিকে প্রথমে সত্য বলে ধরে নিয়েছিলেন। অর্থাৎ, আলোর বেগ শুধু ইথারের সাপেক্ষেই সর্বদা ধ্রুব বা, ৩,০০,০০০ কি.মি./সেকেন্ড থাকে। অর্থাৎ, ইথার ধারণা সঠিক হলে গ্যালিলিওর প্রথম স্বীকার্যটি ভুল হয়ে যায়।

যদি গ্যালিলিওর প্রথম স্বীকার্যকে সত্য হতে হয় তাহলে নিজের প্রতিবিম্ব আয়নায় দেখা যেতে হবে স্বাভাবিকভাবেই। আর সেটা তখনই সম্ভব হবে যখন আলোর বেগ সকল কিছুর সাপেক্ষেই ধ্রুব বা, একই হবে। তাহলে আইনস্টাইন যদি আলোর বেগেও যান তাহলেও আলো তার সাপেক্ষে আলোর বেগেই চলবে। ফলে আলো স্বাভাবিকভাবেই আয়নায় পৌঁছাবে আর আইনস্টাইন তার মুখমন্ডল দেখতে পাবেন।

বিষয়টা আরেকটু পরিষ্কারভাবে বলা যাক। ধরি, আইনস্টাইন একটি আয়না নিয়ে স্থির দাঁড়িয়ে আছেন। তাহলে তিনি যদি এখন তার ডান হাতটি হালকা নাড়ান তবে খুব কম সময়ের মাঝে সামনের আয়নাতে তিনি তার ডান হাত নাড়ানোটি দেখতে পাবেন। এখন যদি তিনি আলোর কাছাকাছি বেগে আয়নাটি নিয়ে দৌড় দেন তবে গ্যালিলিয়ান আপেক্ষিকতা অনুসারে তার সাপেক্ষে আলোর বেগ কমে যাবে (যদি কোন গাড়ি ১০ মি./সেকেন্ড বেগে যায় আর আপনি ৫ মি./সেকেন্ড বেগে সেই একই দিকে দৌড়ান তাহলে আপনার কাছে মনে হবে গাড়ির বেগ কমে ৫ মি./সেকেন্ড হয়ে গিয়েছে। একই যুক্তিতে আলোর বেগের কাছাকাছি বেগে গেলে আপনার সাপেক্ষে আলোর বেগ কমে যাওয়ার কথা)। তাহলে ডান হাত নাড়ানোর অনেক পরে তিনি আয়নাতে তার হাত নাড়ানো দেখতে পাবেন। সময়ের এ পার্থক্য দিয়েও যে কেউ বলে ফেলতে পারবেন যে তিনি আসলে স্থির নয় বরং গতিশীল আছেন। অর্থাৎ, আপনি স্থির থাকলে আলোর বেগ আপনার কাছে যত হবে আপনি যদি আলোর কাছাকাছি বেগেও দৌড়ানো শুরু করেন তবেও আলোর বেগ আপনার সাপেক্ষে ৩,০০,০০ কি.মি./সেকেন্ডই থাকতে হবে। তবেই শুধুমাত্র গ্যালিলিওর প্রথম স্বীকার্যটিকে বাঁচানো সম্ভব হবে। আর এটি সত্য হলে আলোর বেগের ওপড় ইথারের আর কোন প্রভাব থাকে না। সুতরাং ইথার ধারণাটিও অপ্রয়োজনীয় হয়ে যায়।

অর্থাৎ, গ্যালিলিওর প্রথম স্বীকার্য এবং ইথার ধারণা এ দুটোই একই সাথে সত্য হতে পারেনা। এদের যেকোন একটাকে মিথ্যা হতেই হবে। এর আগেই মাইকেলসন-মর্লির এক্সপেরিমেন্ট থেকে আমরা দেখেছি ইথারের অস্তিত্ব প্রমাণ করা সম্ভব হয় নি। আইনস্টাইনও দেখলেন আলোর বেগকে যদি সব কিছুর সাপেক্ষে সর্বদা একই ধরে নেয়া হয় তাহলে ইথারের আর প্রয়োজন পড়ে না। এভাবেই ইথার ধারণাটি আইনস্টাইন বাতিল করে দিলেন আর গ্যালিলিওর প্রথম স্বীকার্যটিকেই নিজের স্পেশাল থিওরি অভ রিলেটিভিটিরও প্রথম স্বীকার্য বানিয়ে নিলেন। আর দ্বিতীয় স্বীকার্যতে বললেন, আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব যা আমরা উপড়ের থট এক্সপেরিমেন্ট থেকে দেখলাম।

আলোর বেগ সব কিছুর সাপেক্ষেই সর্বদা ধ্রুব এই কথাটি মেনে নিতে অনেকেরই প্রথম প্রথম অনেক কষ্ট হয়। তাই বিষয়টি আরেকটু ব্যাখ্যা করা যাক। ধরুন, পৃথিবীর মানুষ আর এলিয়েনদের মাঝে একটি যুদ্ধ শুরু হয়ে গিয়েছে। আপনি একটি স্পেস শিপ নিয়ে মহাকাশে গেলেন। একজন এলিয়েনও তাদের স্পেস শিপ নিয়ে মহাকাশে চলে গেলো। দুজনের স্পেস শিপেই কিন্তু হেডলাইটের মতো লাইট জ্বলার ব্যবস্থা আছে। হঠাৎ জ্বালানি শেষ হয়ে যাওয়াই আপনি আপনার স্পেস শিপটি নিয়ে স্থির দাঁড়িয়ে আছেন। তখনই এলিয়েন স্পেস শিপটি ২,০০,০০০ কি.মি./সেকেন্ড বেগে আপনার দিকে ছুঁটে আসল। আর আসতে আসতে ১০ কি.মি./সেকেন্ড বেগে গুলি ছুঁড়তে পারে এমন একটি বন্দুক থেকে আপনার দিকে গুলি ছুঁড়তে লাগলো। তাহলে আপনি গুলিগুলোর বেগ কত দেখবেন? নিশ্চয় উত্তর দেবেন যে, আপনি দেখবেন গুলিগুলো ২,০০,০১০ কি.মি./সেকেন্ড বেগে আপনার দিকে ধেয়ে আসছে। কারণ গ্যালিলিয়ান আপেক্ষিকতা বলে যে, গুলির বেগের সাথে স্পেস শিপের বেগ যোগ হয়ে যাবে। এখন স্পেস শিপটি যদি হঠাৎ করে তার তার হেড লাইটটি জ্বালিয়ে দেয় তাহলে কি দেখবেন? আলোর বেগ কত হবে? স্পেস শিপের বেগ + আলোর বেগ? মানে ৫,০০,০০০ কি.মি./সেকেন্ড? গ্যালিলিয়ান আপেক্ষিকতা তো তাই বলে। কিন্তু আইনস্টাইন বললেন, না। তখনও আপনি দেখবেন আলোর বেগ শুধু আলোর বেগের সমানই। মানে সর্বদাই ৩,০০,০০০ কি.মি./সেকেন্ড। এক ফোঁটা কমও নয় আবার এক ফোঁটা বেশিও নয়। এটাই আইনস্টাইনের দ্বিতীয় স্বীকার্য। এটাই সত্য!

আলোর বেগ যেভাবেই মাপা হোক না কেন তা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যায়। এ কারণেই মাইকেলসন-মর্লি যখন তাদের পরীক্ষাটি করেন তখন তাদের পরীক্ষায় সোজা পাঠানো আলো আর সমকোণে পাঠানো আলোর বেগের মাঝে কোন পার্থক্য ধরা পড়েছিলো না। পরবর্তিতেও অনেক পরীক্ষার মাধ্যমে প্রমাণিত হয়েছে যে আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে।

অর্থাৎ, দেখা গেলো আইনস্টাইনের এই ছোট্ট থট এক্সপেরিমেন্টের মাধ্যমে আমরা স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি পেয়ে গেলাম। এ দুটি স্বীকার্যের উপড় ভিত্তি করেই দাঁড়িয়ে আছে আইনস্টাইনের বিশেষ আপেক্ষিকতার তত্ত্ব। তাই চলুন এ স্বীকার্য দুটি আরেকবার সুন্দর করে আমরা লিখে ফেলি। আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটির স্বীকার্য দুটি হলঃ

১। “একে অপরের সাপেক্ষে সমবেগে গতিশীল দুটি সিস্টেমে পদার্থবিজ্ঞান আসলে একই রকমভাবে কাজ করে এবং একই রকম ফলাফল দেয়” (গ্যালিলিওর প্রথম স্বীকার্যের অনুরুপ)

২। আলোর বেগ সকল কিছুর সাপেক্ষেই সর্বদা ধ্রুব বা, একই থাকে। আলোর বেগ যেভাবেই মাপা হোক না কেন তা সর্বদা ৩,০০,০০০ কি.মি./সেকেন্ডই পাওয়া যাবে।

এ দুটি স্বীকার্যের উপড় ভিত্তি করে আমরা কাল দীর্ঘায়ন সম্বন্ধেও বুঝতে পারি। গ্যালিলিয়ান আপেক্ষিকতার দ্বিতীয় স্বীকার্য, যেখানে সময়কে পরম হিসেবে ধরা হয়েছিল তা যে ভুল তা আমরা আইনস্টাইনের উপড়ের দুটি স্বীকার্য থেকে পাই। অর্থাৎ, গ্যালিলিয়ান আপেক্ষিকতার প্রথম স্বীকার্য ঠিক হলেও দ্বিতীয় স্বীকার্যে পরম সময়ের বদলে পরম আলোর বেগ ব্যবহার করলেন আইনস্টাইন। এছাড়াও আমরা দৈর্ঘ্য সঙ্কোচন, ভর বা, ভরের আপেক্ষিকতা এবং ভর আর শক্তি যে একই জিনিস এমন অনেক কিছু আইনস্টাইনের স্পেশাল থিওরি অভ রিলেটিভিটি থেকে পরবর্তিতে জানতে এবং বুঝতে পারি। এ বিষয়গুলো নিয়ে পরবর্তি কোন এক লেখায় কথা বলা যাবে। আজ এ পর্যন্তই। কষ্ট করে এতদূর পড়ার জন্য সকলকে ধন্যবাদ।